
Apc	smart	ups	650	manual

http://oalroax.com/c3?utm_term=apc+smart+ups+650+manual

Apc	cs	650	manual.	Apc	back-ups	cs	650	manual.	Back-ups	cs	650	manual.

Image	not	available	forColor:	To	view	this	video	download	Flash	Player	Green	PremiumTM	label	is	Schneider	Electric’s	commitment	to	delivering	products	with	best-in-class	environmental	performance.	Green	Premium	promises	compliance	with	the	latest	regulations,	transparency	on	environmental	impacts,	as	well	as	circular	and	low-CO2
products.Learn	morearrow2_leftThe	product	must	be	disposed	on	European	Union	markets	following	specific	waste	collection	and	never	end	up	in	rubbish	bins	Easily	find	answers	to	the	most	frequently	asked	questions.	Battery	backup	units	allow	you	to	continue	using	your	network	connection	or	computer	system	during	utility	power	problems	like
outages	or	when	utility	voltage	fluctuates	outside	of	safe	levels.	In	these	cases,	the	battery	backup	unit	will	instantly	switch	...		Show	More	The	best	UPS	backup	will	give	you	the	peace	of	mind	that,	in	the	event	of	a	blackout	or	power	surge,	your	PC	and	game	progress	will	remain	safe.	Power	surges	can	ruin	gaming	PC	components,	but	with	a	UPS
backup	you'll	save	a	bunch	of	troubleshooting,	and	more	importantly:	money.	Should	something	catastrophic	happen	to	your	power,	the	best	UPS	will	be	your	knight	in	technological	armor.If	you've	got	a	high-end	gaming	PC	(opens	in	new	tab),	it's	a	smart	idea	to	pair	it	with	an	uninterrupted	power	supply	battery	as	a	backup.	This	protects	your
system	from	fluctuations	in	outlet	power	and	acts	as	a	surge	protector,	too.	A	UPS	will	utilize	its	internal	batteries	to	deliver	a	steady	flow	of	power,	and	a	good	one	will	work	long	enough	for	you	to	save	your	work,	or	get	to	a	save	point,	before	shutting	down	your	PC	safely.The	time	a	UPS	gives	you	to	save	your	game	or	work	will	vary,	and	there	are
other	things	to	consider,	too.	Each	UPS	below	we've	tested	and	found	to	deliver	exactly	what	we	needed	out	of	what	should	be	an	otherwise	fairly	unremarkable	looking	black	box.	So	you	can	get	a	better	read	on	which	is	best	for	you	and	your	budget.The	best	UPS	for	gaming	PCsImage	1	of	3(Image	credit:	Cyberpower)Image	1	of	3(Image	credit:
Cyberpower)Image	1	of	3(Image	credit:	Cyberpower)Image	1	of	3The	CyberPower	CP1500PFCLCD	1500VA	is	one	of	the	best	UPS	on	the	market.	Several	factors	contribute	to	it	being	our	top	pick	for	most	gamers.	First,	it	has	enough	juice	to	handle	most	gaming	machines	on	the	market,	even	if	you're	running	dual	GPUs.	Unless	you've	got	systems
with	ten	hard	drives,	quad-way	GPUs,	and	other	accessories,	the	CP1500PFCLCD	should	have	enough	juice	to	last	10–20	minutes	(longer	if	you	have	a	more	moderate	rig)	if	a	power	failure	occurs.One	of	the	most	critical	features	of	the	CP1500PFCLCD	is	its	true	sine-wave	output.	Most	UPS	backups	in	their	price	range	only	provide	sine-wave
simulated	production,	a	stepped	sine-wave	that	approximates	what	you	get	out	of	your	wall	outlet.	Some	electronics	are	sensitive	to	simulated	sine	waves	and	will	behave	abnormally.	At	$214,	having	true	sine-wave	output	is	unheard	of,	so	kudos	to	CyberPower	for	delivering	such	a	quality	output.Image	1	of	3(Image	credit:	Cyberpower)Image	1	of
3(Image	credit:	Cyberpower)Image	1	of	3(Image	credit:	Cyberpower)Image	1	of	3For	smaller	accessories	and	network	equipment,	the	CyberPower	EC650LCD	is	the	best	pick	for	most.	Coming	in	at	just	over	$70	for	390W/650VA,	the	EC650LCD	has	enough	power	reserves	to	keep	the	average	home	network	alive	for	well	over	15	minutes,	which	is
enough	time	to	exit	your	game/applications,	save	all	your	work	through	the	network,	and	shut	everything	off	gracefully	during	a	power	outage.The	EC650LCD	is	small	enough	to	hide	away,	taking	up	very	little	desktop	room	for	a	390W	unit.	One	of	my	favorite	features	of	the	EC650LCD	is	its	array	of	ECO	ports.	These	ports	can	be	managed	and	timed
to	turn	on	or	off,	depending	on	your	schedule	or	use	case.	The	ECO	ports	will	also	power	down	accessories	like	your	speakers	and	display	if	your	PC	is	asleep	or	powered	down.Best	gaming	PC	(opens	in	new	tab)	|	Best	gaming	laptop	(opens	in	new	tab)|	Best	gaming	motherboards	(opens	in	new	tab)	|	Best	SSD	for	gaming	(opens	in	new	tab)	|	Best
DDR4	RAM	(opens	in	new	tab)	|	Best	PC	cases	(opens	in	new	tab)	Image	1	of	3(Image	credit:	APC)Image	1	of	3(Image	credit:	APC)Image	1	of	3(Image	credit:	APC)Image	1	of	3The	name	APC	is	synonymous	with	high-quality	UPS	products.	I	use	three	of	the	company's	Smart-UPS	professional	level	units	at	home:	two	1000VA	units	for	my	network	and
NAS	gear	and	one	1500VA	unit	for	my	PC	and	displays.APC's	BE600M1	is	excellent	at	providing	both	battery	and	surge	protection	for	the	devices	you	use	most	every	day.	That	is	your	phone	and	possibly	a	tablet.	However,	it	has	enough	power	reserves	for	you	to	plug	in	at	least	a	router	and	a	single	display.	If	you	only	plan	to	use	the	BE600M1	to
power	a	Wi-fi	router,	the	unit	will	have	enough	juice	in	it	to	let	you	browse	the	internet	in	peace	for	several	hours,	even	if	the	electricity	in	the	rest	of	your	house	is	gone.	Priorities.The	best	part	of	the	BE600M1	is	its	size.	Most	UPS	are	large	and	belong	on	the	floor,	but	APC	encourages	you	to	put	the	BE600M1	on	a	desk.	The	unit	provides	a	single
1.5A	USB	port	for	charging	a	phone	or	tablet,	so	you	don't	have	to	use	your	device's	power	adapter,	which	is	inevitably	a	wall	wart	that	potentially	overlaps	another	socket	or	two,	so	you	free	up	sockets	for	other	devices.The	best	UPS	for	PC	gaming	FAQAn	uninterruptible	power	supply	that	rates	at	1500VA	should	run	your	computer	for	a	little	under
an	hour.	But	if	you're	trying	to	run	your	PC	and	your	monitor	from	it,	then	you're	probably	looking	at	more	like	ten	minutes	of	up-time.	A	650VA,	at	peak	load,	will	maybe	net	you	something	in	the	range	of	seven	minutes,	though	that	is	obviously	with	a	far	lower	peak	wattage.There	are	two	types	of	uninterruptible	power	supply	to	look	out	for	when
shopping	around	for	your	gaming	PC:	sine-wave	and	simulated	sine-wave.	Sine-wave	UPS	backups	deliver	a	smooth,	consistent	oscillation	of	AC	power	directly	to	your	PSU.	These	are	often	the	only	type	of	UPS	you'll	find	recommended	for	gaming	PCs	due	to	their	efficiency	and	clean	power	delivery.A	pure	sine-wave	signal	will	be	a	match	for	the	AC
mains	power	your	PSU	is	expected	from	your	mains.	Essentially,	your	PC	shouldn't	know	the	difference	between	your	UPS	battery	power	and	the	power	coming	from	the	wall.	Simulated	sine-wave	UPS	deliver	a	stepped,	approximated	waveform	using	pulse-width	modulation	(PWM).	That's	the	same	concept	used	to	control	PC	case	fan	(opens	in	new
tab)	RPM.	These	are	often	far	less	expensive	than	pure	sine-wave	UPS	and	can	be	useful	for	peripherals,	small	devices,	and	monitors.	However,	since	the	waveform	is	not	always	exact,	these	may	not	function	as	intended	with	PSUs	that	demand	a	stable	and	consistent	input.	When	your	UPS	detects	a	power	surge	or	cut	it	will	switch	to	battery	power.
How	it	delivers	that	battery	power	to	your	PC	or	accessories	is	when	sine-wave	versus	simulated	sine-wave	matters	most.	That's	because	some	PSUs	will	actually	recognise	a	simulated	sine-wave	frequency	and	shut	down	suddenly	to	protect	themselves	from	the	unexpected	oddity	in	power.	Thus,	your	UPS	won't	actually	be	saving	your	PC	from	a	loss
of	power.	Adam	Kropelin	Kern	Sibbald	Apcupsd	is	a	UPS	control	system	that	permits	orderly	shutdown	of	your	computer	in	the	event	of	a	power	failure.	May	31,	2016	13:50:45	This	manual	documents	apcupsd	version	3.14.x	Copyright	©	2004-2015	Adam	Kropelin	Copyright	©	1999-2005	Kern	Sibbald	Copying	and	distribution	of	this	file,	with	or
without	modification,	are	permitted	in	any	medium	without	royalty	provided	the	name	Apcupsd,	the	copyright	notice,	and	this	notice	are	preserved.	Apcupsd	source	code	is	released	under	the	GNU	General	Public	License	version	2.	Please	see	the	file	COPYING	in	the	main	source	directory.	For	more	information	on	the	project,	please	visit	the	main	web
site	at	No	person	should	rely	on	the	contents	of	the	APCUPSD	Manual	("the	manual")	without	first	obtaining	advice	from	APC	Technical	Support.	The	manual	is	provided	on	the	terms	and	understanding	that:	the	authors,	contributors	and	editors	are	not	responsible	for	the	results	of	any	actions	taken	on	the	basis	of	information	in	the	manual,	nor	for
any	error	in	or	omission	from	the	manual;	and	the	authors,	contributors	and	editors	are	not	engaged	in	rendering	technical	or	other	advice	or	services.	The	the	authors,	contributors	and	editors,	expressly	disclaim	all	and	any	liability	and	responsibility	to	any	person,	whether	a	reader	of	the	manual	or	not,	in	respect	of	anything,	and	of	the
consequences	of	anything,	done	or	omitted	to	be	done	by	any	such	person	in	reliance,	whether	wholly	or	partially,	on	the	whole	or	any	part	of	the	contents	of	the	manual.	Without	limiting	the	generality	of	the	above,	no	author,	contributor	or	editor	shall	have	any	responsibility	for	any	act	or	omission	of	any	other	author,	contributor	or	editor.	This	is	the
manual	for	apcupsd,	a	daemon	for	communicating	with	UPSes	(Uninterruptible	Power	Supplies)	made	by	American	Power	Conversion	Corporation	(APC).	If	you	have	an	APC-made	UPS,	whether	sold	under	the	APC	nameplate	or	OEMed	(for	example,	the	HP	PowerTrust	2997A),	and	you	want	you	get	it	working	with	a	computer	running	Linux,	Unix,	or
Windows,	you	are	reading	the	right	document.	This	manual	is	divided	into	parts	which	increase	in	technical	depth	as	they	go.	If	you	have	just	bought	a	state-of-the-art	smart	UPS	with	a	USB	or	Ethernet	interface,	and	you	are	running	a	current	version	of	Red	Hat	or	SUSE	Linux,	then	apcupsd	is	very	nearly	plug-and-play	and	you	will	have	to	read	only
the	Basic	User's	Guide.	If	your	operating	system	is	older,	or	if	you	have	an	old-fashioned	serial-line	UPS,	you'll	have	to	read	about	serial	installation	(see	Installation:	Serial-Line	UPSes).	If	you	need	more	details	about	administration	for	unusual	situations	(such	as	a	master/slave	or	multi-UPS	setup)	you'll	need	to	read	the	sections	on	those	topics	as
well.	Finally,	there	are	a	number	of	technical	reference	sections	which	gives	full	details	on	things	like	configuration	file	directives	and	event-logging	formats.	You	should	begin	by	reading	the	Quick	Start	(see	Quick	Start	for	Beginners)	instructions.	apcupsd	is	a	complex	piece	of	software,	but	most	of	its	complexities	are	meant	for	dealing	with	older
hardware	and	operating	systems.	On	current	hardware	and	software	getting	it	running	should	not	be	very	complicated.	The	following	is	a	help	guide	to	the	steps	needed	to	get	apcupsd	set	up	and	running	as	painlessly	as	possible.	Check	to	see	if	apcupsd	supports	your	UPS	and	cable	(see	Supported	UPSes	and	Cables).	Check	to	see	if	apcupsd
supports	your	operating	system	(see	Supported	Operating	Systems).	Plan	your	configuration	type	(see	Choosing	a	Configuration	Type).	If	you	have	just	one	UPS	and	one	computer,	this	is	easy.	If	you	have	more	than	one	machine	being	served	by	the	same	UPS,	or	more	than	one	UPS	supplying	power	to	computers	that	are	on	the	same	local	network,
you	have	more	choices	to	make.	Figure	out	if	you	have	one	of	the	easy	setups.	If	you	have	a	USB	UPS,	and	a	supported	operating	system	and	you	want	to	use	one	UPS	with	one	computer,	that's	an	easy	setup.	APC	supplies	the	cable	needed	to	talk	with	that	UPS	along	with	the	UPS.	All	you	need	to	do	is	check	that	your	USB	subsystem	is	working	(see
USB	Configuration);	if	so,	you	can	go	to	the	build	and	install	step.	If	you	have	a	UPS	designed	to	communicate	via	SNMP	over	Ethernet,	that	is	also	a	relatively	easy	installation.	Details	are	provided	in	Support	for	SNMP	UPSes.	If	you	have	a	UPS	that	communicates	via	an	RS232C	serial	interface	and	it	is	a	SmartUPS,	then	things	are	relatively	simple,
otherwise,	your	life	is	about	to	get	interesting.	If	you	have	a	vendor-supplied	cable,	find	out	what	cable	type	you	have	by	looking	on	the	flat	ends	of	the	cable	for	a	number,	such	as	940-0020A,	stamped	in	the	plastic.	If	you	don't	have	a	vendor-supplied	cable,	or	your	type	is	not	supported,	you	may	have	to	build	one	yourself	(see	Cables).	Here	is	hoping
you	are	good	with	a	soldering	iron!	Now	you	are	ready	to	read	the	Building	and	Installing	(see	Building	and	Installing	apcupsd)	section	of	the	manual	and	follow	those	directions.	If	you	are	installing	from	an	RPM	or	some	other	form	of	binary	package,	this	step	will	probably	consist	of	executing	a	single	command.	Tweak	your	/etc/apcupsd/apcupsd.conf
file	as	necessary.	Often	it	will	not	be.	Change	the	BIOS	settings	(see	Arranging	for	Reboot	on	Power-Up)	on	your	computer	so	that	boots	up	every	time	it	gets	power.	(This	is	not	the	default	on	most	systems.)	To	verify	that	your	UPS	is	communicating	with	your	computer	and	will	do	the	right	thing	when	the	power	goes	out,	read	and	follow	the
instructions	in	the	Testing	(see	Testing	Apcupsd)	section.	If	you	run	into	problems,	check	the	apcupsd	users'	email	list	archive	for	similar	problems.	This	is	an	excellent	resource	with	answers	to	all	sorts	of	questions.	See	.	If	you	still	need	help,	send	a	message	to	the	apcupsd	users'	email	list	(apcupsd-users@lists.sourceforge.net)	describing	your
problem,	what	version	of	apcupsd	you	are	using,	what	operating	system	you	are	using,	and	anything	else	you	think	might	be	helpful.	Read	the	manual	section	on	Monitoring	and	Tuning	your	UPS.	apcupsd	supports	many	UNIX-like	operating	systems	as	well	as	several	variants	of	Windows.	Due	to	lack	of	API	standardization,	USB	support	is	not
available	on	every	platform.	See	Platform	Support	below	for	details.	In	general	it	is	recommended	to	obtain	a	prebuilt	package	for	your	platform.	Given	how	apcupsd	must	integrate	into	the	shutdown	mechanism	of	the	operating	system	and	the	rate	at	which	such	mechanisms	are	changed	by	vendors,	the	platform	ports	in	the	apcupsd	tree	may	become
out	of	date.	In	some	cases,	binary	packages	are	provided	by	the	apcupsd	team	(RedHat,	Mandriva,	SuSE,	Windows,	Mac	OS	X).	For	other	platforms	it	is	recommended	to	check	your	vendor's	package	repository	and	third	party	repositories	for	recent	binary	packages.	Note	that	some	vendors	continue	to	distribute	ancient	versions	of	apcupsd	with
known	defects.	These	packages	should	not	be	used.	LINUX	WINDOWS	Windows	NT	4	[2]	[4]	Windows	98/ME/2000	[2]	[4]	Windows	XP/Vista	(including	64	bit)	[1]	[2]	Windows	Server	2003/2008	(including	64	bit)	[2]	Windows	7	[2]	OTHERS	apcupsd	supports	nearly	every	APC	brand	UPS	model	in	existence	and	enough	different	cable	types	to	connect
to	all	of	them.	The	UPSTYPE	field	is	the	value	you	will	put	in	your	/etc/apcupsd/apcupsd.conf	file	to	tell	apcupsd	what	type	of	UPS	you	have.	We'll	describe	the	possible	values	here,	because	they're	a	good	way	to	explain	your	UPS's	single	most	important	interface	property:	the	kind	of	protocol	it	uses	to	talk	with	its	computer.	apcsmart	The	'apcsmart'
protocol	uses	an	RS232	serial	connection	to	pass	commands	back	and	forth	in	a	primitive	language	resembling	modem-control	codes.	APC	calls	this	language	"UPS-Link".	Originally	introduced	for	Smart-UPS	models	(thus	the	name	'apcsmart'),	this	class	of	UPS	is	in	decline,	rapidly	being	replaced	in	APC's	product	line	by	USB	and	MODBUS	UPSes.
usb	A	USB	UPS	speaks	a	universal	well	defined	control	language	over	a	USB	wire.	Most	of	APC's	lineup	now	uses	this	method	as	of	late	2003,	and	it	seems	likely	to	completely	take	over	in	their	low-	and	middle	range.	The	most	recent	APC	UPSes	support	only	a	limited	set	of	data	over	the	USB	interface.	MODBUS	(see	below)	is	required	in	order	to
access	the	advanced	data.	net	This	is	the	keyword	to	specify	if	you	are	using	your	UPS	in	Slave	mode	(i.e.	the	machine	is	not	directly	connected	to	the	UPS,	but	to	another	machine	which	is),	and	it	is	connected	to	the	Master	via	an	ethernet	connection.	You	must	have	apcupsd's	Network	Information	Services	NIS	turned	on	for	this	mode	to	work.	snmp
SNMP	UPSes	communicate	via	an	Ethernet	NIC	and	firmware	that	speaks	Simple	Network	Management	Protocol.	dumb	A	dumb	or	voltage-signaling	UPS	and	its	computer	communicate	through	the	control	lines	(not	the	data	lines)	on	an	RS232C	serial	connection.	Not	much	can	actually	be	conveyed	this	way	other	than	an	order	to	shut	down.	Voltage-
signaling	UPSes	are	obsolete;	you	are	unlikely	to	encounter	one	other	than	as	legacy	hardware.	If	you	have	a	choice,	we	recommend	you	avoid	simple	signalling	UPSes.	pcnet	PCNET	is	an	alternative	for	SNMP	available	on	APC's	AP9617	family	of	smart	slot	modules.	The	protocol	is	much	simpler	and	potentially	more	secure	than	SNMP.	modbus
MODBUS	is	the	newest	APC	protocol	and	operates	over	RS232	serial	links	or	USB.	MODBUS	is	APC's	replacement	for	the	aging	'apcsmart'	(aka	UPS-Link)	protocol.	MODBUS	is	the	only	way	to	access	detailed	control	and	status	information	on	newer	(esp.	SMT	series)	UPSes.	There	are	three	major	ways	of	running	apcupsd	on	your	system.	The	first	is
a	standalone	configuration	where	apcupsd	controls	a	single	UPS,	which	powers	a	single	computer.	This	is	the	most	common	configuration.	If	you're	working	with	just	one	machine	and	one	UPS,	skip	the	rest	of	this	section.	Your	choices	become	more	interesting	if	you	are	running	a	small	cluster	or	a	big	server	farm.	Under	those	circumstances,	it	may
not	be	possible	or	even	desirable	to	pair	a	UPS	with	every	single	machine.	apcupsd	supports	some	alternate	arrangements.	The	second	type	of	configuration	is	the	NIS	(Network	Information	Server)	server	and	client.	In	this	configuration,	where	one	UPS	powers	several	computers,	a	copy	of	apcupsd	running	one	one	computer	will	act	as	a	server	while
the	other(s)	will	act	as	network	clients	which	poll	the	server	for	information	about	the	UPS.	Note	that	"NIS"	is	not	related	to	Sun's	directory	service	also	called	"NIS"	or	"Yellow	Pages".	The	third	configuration	is	where	a	single	computer	controls	multiple	UPSes.	In	this	case,	there	are	several	instances	of	apcupsd	on	the	same	computer,	each
controlling	a	different	UPS.	One	instance	of	apcupsd	will	run	in	standalone	mode,	and	the	other	instance	will	normally	run	in	network	mode.	This	type	of	configuration	may	be	appropriate	for	large	server	farms	that	use	one	dedicated	machine	for	monitoring	and	diagnostics	Here	is	a	diagram	that	summarizes	the	possibilities:	If	you	decide	to	set	up
one	of	these	more	complex	configurations,	see	the	dedicated	section	on	that	particular	configuration.	Apcupsd	supports	USB	connections	on	all	major	operating	systems:	Linux,	FreeBSD,	OpenBSD,	NetBSD,	Windows,	Solaris,	and	Mac	OS	X	Darwin.	If	you	plan	to	use	a	USB	connection,	please	read	the	appropriate	subsection	in	its	entirety.	You	can
skip	this	section	if	your	UPS	has	a	serial	(RS232-C)	or	Ethernet	interface	or	if	you	are	not	running	one	of	the	platforms	listed	above.	Problem	Linux	2.4	series	kernels	older	than	2.4.22	(RH	9,	RHEL	3)	do	not	bind	the	USB	device	to	the	proper	driver.	This	is	evidenced	by	/proc/bus/usb/devices	listing	the	UPS	correctly	but	it	will	have	"driver=(none)"
instead	of	"driver=(hid)".	This	affects	RHEL3,	among	others.	Workaround	Upgrade	linux	kernel	to	2.4.22	or	higher.	Alternately,	you	apply	the	linux-2.4.20-killpower.patch	and	linux-2.4.20-USB-reject.patch	patches	to	your	kernel	and	rebuild	it.	These	patches	can	be	found	in	the	examples/	directory	in	the	apcupsd	source	distribution.	Problem
Mandrake	10.0	and	10.1	systems	with	high	security	mode	enabled	(running	kernel-secure	kernel)	use	static	device	nodes	but	still	assign	USB	minor	numbers	dynamically.	This	is	evidenced	by	hiddev0:	USB	HID	v1.10	Device	[...]	instead	of	hiddev96:	...	in	dmesg	log.	Workaround	Boot	standard	kernel	instead	of	kernel-secure	or	disable
CONFIG_USB_DYNAMIC_MINORS	and	rebuild	kernel-secure.	Problem	USB	driver	linux-usb.c	fails	to	compile,	reporting	errors	about	HID_MAX_USAGES	undefined.	This	is	due	to	a	defect	in	the	linux	kernel	hiddev.h	header	file	on	2.6.5	and	higher	kernels.	Workaround	Upgrade	to	apcupsd-3.10.14	or	higher.	These	versions	contain	a	workaround	for
the	defect.	Problem	On	some	systems	such	as	Slackware	10.0,	no	USB	devices	will	show	up	(see	the	next	section).	Workaround	Add	the	following	to	rc.local	mount	-t	usbdevfs	none	/proc/bus/usb	Problem	2.6	kernels	use	udev	and	some	distributions	to	not	configure	it	to	automatically	create	/dev/usb/hiddev??	as	they	should,	causing	apcupsd	to	fail	to
locate	the	UPS.	Workaround	Edit	the	file	/etc/udev/rules.d/50-udev.rules,	and	add	the	following:	KERNEL="hiddev*",	NAME="usb/hiddev%n"	More	details	are	provided	in	the	following	section	...	To	make	sure	that	your	USB	subsystem	can	see	the	UPS,	just	do	this	from	a	shell	prompt:	cat	/proc/bus/usb/devices	This	information	is	updated	by	the
kernel	whenever	a	device	is	plugged	in	or	unplugged,	irrespective	of	whether	apcupsd	is	running	or	not.	It	contains	details	on	all	the	USB	devices	in	your	system	including	hubs	(internal	and	external),	input	devices,	and	UPSes.	You	should	get	some	output	back	that	includes	something	like	this,	featuring	a	BackUPS	RS	1000:	T:	Bus=02	Lev=01
Prnt=01	Port=00	Cnt=01	Dev#=	3	Spd=1.5	MxCh=	0	D:	Ver=	1.10	Cls=00(>ifc)	Sub=00	Prot=00	MxPS=	8	#Cfgs=	1	P:	Vendor=051d	ProdID=0002	Rev=	1.06	S:	Manufacturer=American	Power	Conversion	S:	Product=Back-UPS	RS	1000	FW:7.g3	.D	USB	FW:g3	S:	SerialNumber=JB0308036505	C:*	#Ifs=	1	Cfg#=	1	Atr=a0	MxPwr=	24mA	I:	If#=
0	Alt=	0	#EPs=	1	Cls=03(HID)	Sub=00	Prot=00	Driver=hid	The	important	things	to	check	for	are	the	S:	lines	describing	your	UPS	and	and	the	I:	line	showing	what	driver	is	handling	it.	If	on	the	I:	line,	Driver	is	listed	as	Driver=none	then	you	do	not	have	the	HID	driver	loaded	or	the	driver	did	not	attach	to	the	UPS.	One	common	cause	is	having	a
Linux	kernel	older	than	2.4.22	(such	as	a	stock	RedHat	9	or	RHEL	3	kernel).	If	this	is	the	case	for	your	system,	please	upgrade	to	at	least	kernel	version	2.4.22	and	try	again.	If	you	are	already	running	a	2.4.22	or	higher	kernel,	please	read	further	for	instructions	for	other	possible	courses	of	action.	Here	is	another	example,	this	time	featuring	a	Back-
UPS	350:	T:	Bus=01	Lev=01	Prnt=01	Port=00	Cnt=01	Dev#=	2	Spd=1.5	MxCh=	0	D:	Ver=	1.10	Cls=00(>ifc)	Sub=00	Prot=00	MxPS=	8	#Cfgs=	1	P:	Vendor=051d	ProdID=0002	Rev=	1.00	S:	Manufacturer=American	Power	Conversion	S:	Product=Back-UPS	350	FW:	5.2.I	USB	FW:	c1	S:	SerialNumber=BB0115017954	C:*	#Ifs=	1	Cfg#=	1	Atr=a0
MxPwr=	30mA	I:	If#=	0	Alt=	0	#EPs=	1	Cls=03(HID)	Sub=00	Prot=00	Driver=hid	E:	Ad=81(I)	Atr=03(Int.)	MxPS=	8	Ivl=	10ms	In	general,	if	you	see	your	UPS	model	in	the	S:	field,	which	means	Manufacturer=,	Product=,	and	SerialNumber=,	and	you	see	Driver=hid	in	the	I:	field,	you	know	the	UPS	has	been	recognized	and	is	bound	to	the	correct
driver.	If	your	UPS	doesn't	appear	in	the	list	at	all,	check	the	obvious	things:	The	UPS	must	be	powered	on,	and	a	cable	must	be	properly	seated	in	both	the	data	port	of	the	UPS	and	one	of	your	machine's	USB	ports.	Many	UPSes	have	phone	ports	to	provide	surge	protection	for	phones	or	modems	--	make	sure	you	haven't	plugged	your	USB	cable	into
one	of	those	rather	than	the	data	port	(which	will	usually	be	near	the	top	edge	of	the	case.)	Also,	ensure	that	the	correct	drivers	are	loaded.	Under	Linux-2.4.x,	you	can	check	this	out	easily	by	examining	the	/proc/bus/usb/drivers	file.	Here's	how	you	can	do	that:	cat	/proc/bus/usb/drivers	...and	you	should	get:	usbdevfs	hub	96-111:	hiddev	hid	On	Linux-
2.6.x,	make	sure	the	sysfs	filesystem	is	mounted	on	/sys	and	do:	ls	-l	/sys/bus/usb/drivers/	...where	you	should	get:	total	0	drwxr-xr-x	2	root	root	0	May	1	18:55	hid	drwxr-xr-x	2	root	root	0	May	1	18:55	hiddev	drwxr-xr-x	2	root	root	0	May	1	18:55	hub	drwxr-xr-x	2	root	root	0	May	1	18:55	usb	drwxr-xr-x	2	root	root	0	May	1	18:55	usbfs	...or	perhaps
something	like:	total	0	drwxr-xr-x	2	root	root	0	Jan	6	15:27	hiddev	drwxr-xr-x	2	root	root	0	Jan	6	15:28	hub	drwxr-xr-x	2	root	root	0	Jan	6	15:28	usb	drwxr-xr-x	2	root	root	0	Jan	6	15:27	usbfs	drwxr-xr-x	2	root	root	0	Jan	6	15:28	usbhid	If	your	2.6.x	system	does	not	have	the	/sys/bus/usb	directory,	either	you	do	not	have	sysfs	mounted	on	/sys	or	the	USB
module(s)	have	not	been	loaded.	(Check	/proc/mounts	to	make	sure	sysfs	is	mounted.)	A	USB	UPS	needs	all	of	these	drivers	--	the	USB	device	filesystem,	the	USB	hub,	the	Human	Interface	Device	subsystem	driver,	and	the	Human	Interface	Device	driver.	If	you	are	compiling	your	own	kernel,	you	want	to	enable	CONFIG_USB	CONFIG_USB_HID
CONFIG_USB_HIDDEV	CONFIG_USB_DEVICEFS	...as	well	as	at	least	one	USB	Host	Controller	Driver...	CONFIG_USB_UHCI_HCD	(linux-2.6.x)	CONFIG_USB_OHCI_HCD	(linux-2.6.x)	CONFIG_USB_UHCI	(linux-2.4.x)	CONFIG_USB_OHCI	(linux-2.4.x)	Apcupsd	accesses	USB	UPSes	via	the	hiddev	device	nodes.	Typically	these	are	located	in
/dev/hiddevN,	/dev/usb/hiddevN	or	/dev/usb/hiddev/hiddevN	(where	N	is	a	digit	0	thru	9).	Some	distributions	(some	Debian	releases,	possibly	others)	do	not	provides	these	device	nodes	for	you,	so	you	will	have	to	make	them	yourself.	Check	/dev,	/dev/usb,	and	/dev/usb/hiddev	and	if	you	cannot	find	the	hiddevN	nodes,	run	(as	root)	the	examples/make-
hiddev	script	from	the	apcupsd	source	distribution.	Modern	Linux	distributions	using	the	2.6	kernel	create	device	nodes	dynamically	on	the	fly	as	they	are	needed.	It	is	basically	a	hotplug	system,	giving	a	lot	more	power	to	the	user	to	determine	what	happens	when	a	device	is	probed	or	opened.	It	is	also	a	lot	more	complicated.	Some	early	2.6
distributions	(Fedora	Core	3,	for	one)	do	not	include	hiddev	rules	in	their	default	udev	rule	set.	The	bottom	line	for	apcupsd	on	such	a	system	is	that	if	the	hiddevN	is	not	created	when	you	plug	in	your	UPS,	apcupsd	will	terminate	with	an	error.	The	solution	to	the	problem	is	to	add	a	rule	to	the	udev	rules	file.	On	Fedora	FC3,	this	file	is	found	in
/etc/udev/rules.d/50-udev.rules.	Start	by	adding	the	following	line:	BUS="usb",	SYSFS{idVendor}="051d",	NAME="usb/hiddev%n"	Note	that	this	rule	uses	obsolete	udev	syntax	and	is	specific	to	FC3	and	other	distributions	of	similar	vintage.	Then	either	reboot	your	system,	or	unplug	and	replug	your	UPS	and	then	restart	apcupsd.	At	that	point	a
/dev/usb/hiddevN	node	should	appear	and	apcupsd	should	work	fine.	If	you	have	several	UPSes	or	you	just	want	to	give	your	UPS	a	fixed	name,	you	can	use	rules	like	the	following:	KERNEL=="hiddev*",	SYSFS{serial}=="JB0319033692",	SYMLINK="ups0"	KERNEL=="hiddev*",	SYSFS{serial}=="JB0320004845",	SYMLINK="ups1"	Note	that	this
rule	uses	udev	syntax	that	is	appropriate	only	for	distros	such	as	RHEL4	and	FC4	and	others	of	a	similar	vintage.	More	recent	distros	such	as	FC15	should	use	something	like	this:	KERNEL=="hiddev*",	ATTRS{manufacturer}=="American	Power	Conversion",	ATTRS{serial}=="BB0100009999	",	OWNER="root",	SYMLINK+="ups0"	Replace	the
serial	number	in	quotes	with	the	one	that	corresponds	to	your	UPS.	Then	whenever	you	plug	in	your	UPS	a	symlink	called	ups0,	ups1,	etc.	will	be	created	pointing	to	the	correct	hiddev	node.	This	technique	is	highly	recommended	if	you	have	more	than	one	UPS	connected	to	the	same	server	since	rearranging	your	USB	cables	or	even	upgrading	the
kernel	can	affect	the	order	in	which	devices	are	detected	and	thus	change	which	hiddev	node	corresponds	to	which	UPS.	If	you	use	the	symlink-by-serial-number	approach	the	link	will	always	point	to	the	correct	device	node.	You	can	use...	udevinfo	-a	-p	/sys/class/usb/hiddev0/	...to	get	more	information	on	the	fields	that	can	be	matched	besides	serial
number.	To	find	the	available	attributes	to	match	(note	that	the	serial	is	NOT	always	the	UPS	serial	on	the	box	or	in	the	USB	connect	message	in	/var/log/messages),	use:	udevadm	info	--attribute-walk	--name=/dev/usb/hiddev0	An	additional	device-node-related	problem	is	the	use	of	dynamic	minors.	Some	distributions,	such	as	Mandrake	10,	ship	with
a	kernel	having	CONFIG_USB_DYNAMIC_MINORS	turned	on.	This	is	not	ideal	for	running	with	apcupsd,	and	the	easiest	solution	is	to	turn	CONFIG_USB_DYNAMIC_MINORS	off	and	rebuild	your	kernel,	or	find	a	pre-built	kernel	with	it	off.	For	a	kernel	with	CONFIG_USB_DYNAMIC_MINORS	turned	on	to	work	with	apcupsd,	you	must	enable	devfs.
The	following	will	tell	you	if	devfs	is	enabled:	$	ps	ax	|	grep	devs	...which	should	give	something	like	the	following:	533	?	S	0:00	devfsd	/dev	What	complicates	the	situation	much	more	on	Mandrake	kernels	is	their	security	level	since	CONFIG_DYNAMIC_USB_MINORS	is	turned	on,	but	on	higher	security	levels	devfs	is	turned	off.	The	net	result,	is	that
in	those	situations	hiddev	is	completely	unusable	so	apcupsd	will	not	work.	So,	in	these	cases,	the	choices	are:	Reduce	the	security	level	setting	of	the	system	(not	sure	if	this	is	possible	after	the	initial	install).	Custom	build	a	high	security	kernel	with	devfs	enabled	and	make	sure	devfs	is	mounted	and	devfsd	is	running.	Custom	build	a	high	security
kernel	with	dynamic	minors	disabled	Use	udev	If	all	these	things	check	out	and	you	still	can't	see	the	UPS,	something	is	more	seriously	wrong	than	this	manual	can	cover	--	find	expert	help.	If	you	are	unable	to	list	USB	devices	or	drivers,	you	kernel	may	not	be	USB-capable	and	that	needs	to	be	fixed.	Problem	FreeBSD	lockups:	Some	users	have
experienced	lockups	(apcupsd	stops	responding)	on	FreeBSD	systems.	Solution	Recent	versions	of	Apcupsd	have	addressed	this	issue.	Please	upgrade	to	apcupsd-3.10.18	or	higher.	Problem	FreeBSD	kernel	panics	if	USB	cable	is	unplugged	while	apcupsd	is	running.	Solution	This	is	a	kernel	bug	and	is	most	easily	worked	around	by	not	hot-	unplugging
the	UPS	while	apcupsd	is	running.	This	issue	may	be	fixed	in	recent	FreeBSD	kernels.	The	*BSD	USB	driver	supports	FreeBSD,	OpenBSD	and	NetBSD.	(Thanks	go	to	the	*BSD	developers	who	kept	a	nearly	identical	interface	across	all	three	platforms.)	Users	of	OpenBSD,	NetBSD,	and	some	versions	of	FreeBSD	will	need	to	rebuild	the	kernel	in	order
to	enable	the	ugen	driver	and	disable	the	uhid	driver.	uhid	is	not	sufficient	for	apcupsd	at	this	time	and	we	need	to	prevent	it	from	grabbing	the	UPS	device.	You	should	make	the	following	changes	to	your	kernel	config	file:	FreeBSD	(v5.4	and	below,	v6.0)	(you	will	not	lose	use	of	USB	keyboard	and	mouse)	Disable:	uhid	Enable:	ugen	FreeBSD	(v5.5,
v6.1	and	above)	(you	will	not	lose	use	of	USB	keyboard	and	mouse)	Disable:	(nothing)	Enable:	ugen	This	is	the	default	configuration	for	a	GENERIC	kernel	on	many	platforms	so	you	most	likely	will	not	need	to	recompile.	NetBSD	(v3.x	and	below)	(you	will	lose	use	of	USB	keyboard	and	mouse)	Disable:	uhidev,	ums,	wsmouse,	ukbd,	wskbd,	uhid	Enable:
ugen	NetBSD	(v4.0	and	above)	You	can	use	apcupsd	on	single	USB	port	without	disabling	the	USB	keyboard	and	mouse	on	other	ports,	though	all	other	devices	will	be	disabled	on	the	port	you	pick	for	your	UPS.	First,	decide	which	hub	and	port	you	wish	to	use.	You	can	find	out	the	hub	and	port	numbers	for	any	particular	physical	connector	by
plugging	a	USB	device	into	it	and	looking	at	the	messages	printed	by	the	kernel;	you	should	messages	something	like	this:	uxx0	at	uhub0	port	1	uxx0:	To	use	your	APC	UPS	on	this	port,	configure	the	kernel	to	prefer	attachment	of	the	ugen	driver	over	other	drivers	on	this	hub	and	port	only,	by	adding	a	line	like	this	to	your	kernel	config	file:	ugen*	at
uhub0	port	1	flags	1	(The	"flags	1"	forces	the	ugen	to	attach	instead	of	anything	else	detected	there.)	Configure	and	build	that	kernel	as	per	the	references	below,	and	your	UPS	will	now	attach	as	a	ugen	device	when	plugged	into	that	port.	Don't	forget	to	'cd	/dev'	and	'./MAKEDEV	ugen1'	(and	2	and	so	on)	if	you	have	more	than	one	generic	usb	device
on	your	system.	OpenBSD	(you	will	lose	use	of	USB	keyboard	and	mouse):	Disable:	uhidev,	ums,	wsmouse,	ukbd,	wskbd,	uhid	Enable:	ugen	For	detailed	information	on	rebuilding	your	kernel,	consult	these	references:	FreeBSD	NetBSD	OpenBSD	After	building	a	properly	configured	kernel,	reboot	into	that	kernel	and	plug	in	your	UPS	USB	cable.	You
should	see	a	dmesg	log	message	like	the	following:	ugen0:	American	Power	Conversion	Back-UPS	RS	1500	FW:8.g6	.D	USB	FW:g6,	rev	1.10/1.06,	addr	2	Note	that	the	ugen	driver	is	called	out.	If	you	see	uhid	instead,	it	probably	means	you	did	not	properly	disable	the	uhid	driver	when	you	compiled	your	kernel	or	perhaps	you're	not	running	the	new
kernel.	You	can	also	check	with	'usbdevs	-d'	to	get	a	list	of	USB	devices	recognized	by	the	system	as	well	as	the	drivers	they	are	associated	with.	For	example:	#	usbdevs	-d	addr	1:	UHCI	root	hub,	VIA	uhub0	addr	2:	Back-UPS	RS	1500	FW:8.g6	.D	USB	FW:g6,	American	Power	Conversion	ugen0	Apcupsd	communicates	with	the	UPS	through	the	USB
generic	device,	ugen.	You	may	or	may	not	need	to	manually	make	ugen	device	nodes	in	/dev,	depending	on	what	OS	you	are	using.	FreeBSD	No	manual	intervention	needed.	FreeBSD	automatically	creates	the	ugen	nodes	on	demand.	NetBSD	By	default,	NetBSD	only	creates	nodes	for	the	first	ugen	device,	ugen0.	Check	usbdevs	-d	to	see	which	device
your	UPS	was	bound	to	and	then	create	the	appropriate	node	by	running	'cd	/dev	;	./MAKEDEV	ugenN',	where	ugenN	is	the	ugen	device	name	shown	by	usbdevs.	It	is	probably	a	good	idea	to	create	several	sets	of	ugen	nodes	in	case	you	add	more	USB	devices.	OpenBSD	Similar	to	NetBSD,	OpenBSD	creates	nodes	for	ugen0	and	ugen1.	Check	usbdevs
-d	to	see	which	device	your	UPS	was	bound	to	and	then	create	the	appropriate	node	by	running	'cd	/dev	;	./MAKEDEV	ugenN',	where	ugenN	is	the	ugen	device	name	shown	by	usbdevs.	It	is	probably	a	good	idea	to	create	several	sets	of	ugen	nodes	in	case	you	add	more	USB	devices.	Apcupsd	supports	USB	UPSes	on	Windows	XP	and	newer,	including
64	bit	systems.	USB	connected	UPSes	on	Windows	require	a	special	driver.	In	most	cases,	this	driver	is	automatically	installed	when	you	install	Apcupsd.	However	in	some	cases	you	may	need	to	install	the	driver	manually.	For	detailed	instructions,	please	see	the	install.txt	file	located	in	the	driver	folder	of	your	Apcupsd	install.	After	installing
Apcupsd	(and	the	Apcupsd	USB	driver,	if	necessary),	plug	in	your	UPS	USB	cable	and	open	the	Windows	Device	Manager.	You	should	see	a	American	Power	Conversion	USB	UPS	(Apcupsd)	listed	under	the	Batteries	section.	If	a	device	of	that	name	does	not	appear,	check	that	your	UPS	is	powered	on	and	that	the	USB	cable	is	connected	at	both	ends.
Reinstall	the	driver	as	directed	above	if	needed.	Apcupsd	supports	USB	UPSes	on	Solaris	10	and	higher.	Both	x86	and	SPARC	platforms	are	supported.	Some	specific	packages	are	necessary	when	building	Apcupsd	with	USB	support	on	Solaris.	You	must	install	the	SUNWlibusb	and	SUNWlibusbugen	packages	BEFORE	attempting	to	build	Apcupsd.
These	packages	can	be	found	on	the	Solaris	installation	CDROMs	and	should	be	installed	with	the	pkgadd	utility.	You	also	should	build	using	the	gcc	compiler	and	ccs	make,	not	Sun's	compiler.	The	appropriate	make	utility	can	be	found	in	/usr/ccs/bin.	gcc	can	be	installed	from	packages	included	on	the	Solaris	installation	CDROMs.	Configure	and
build	Apcupsd	normally,	as	described	in	Building	and	Installing	Apcupsd.	Be	sure	to	include	the	--enable-usb	flag	to	configure.	After	building,	install	Apcupsd	as	root	using	'make	install',	then	perform	a	reconfigure	boot	('reboot	--	-r').	During	installation,	Apcupsd	will	automatically	configure	your	USB	subsystem	to	attach	APC	USB	devices	to	the	ugen
driver.	This	is	a	critical	step	and	must	be	completed	by	a	reconfigure	boot.	Note	that	the	USB	config	changes	will	be	reversed	if	you	remove	Apcupsd	using	'make	uninstall'.	After	installing	Apcupsd	as	described	above	and	performing	a	reconfigure	boot,	plug	in	your	UPS	USB	cable.	You	should	see	a	series	of	dmesg	log	messages	similar	to	the
following:	Dec	5	17:50:50	sunblade	usba:	[ID	912658	kern.info]	USB	1.10	device	(usb51d,2)	operating	at	low	speed	(USB	1.x)	on	USB	1.10	root	hub:	input@4,	ugen0	at	bus	address	3	Dec	5	17:50:50	sunblade	usba:	[ID	349649	kern.info]	American	Power	Conversion	Smart-UPS	1000	FW:600.1.D	USB	FW:1.2	AS0127232356	Dec	5	17:50:50	sunblade
genunix:	[ID	936769	kern.info]	ugen0	is	/pci@1f,0/usb@c,3/input@4	Dec	5	17:50:50	sunblade	genunix:	[ID	408114	kern.info]	/pci@1f,0/usb@c,3/input@4	(ugen0)	online	Note	that	the	ugen	driver	is	called	out.	If	you	do	not	see	any	dmesg	entries	related	to	your	UPS,	ensure	that	it	is	turned	on	and	that	the	USB	cable	is	connected	at	both	ends.	Also
verify	that	you	installed	Apcupsd	as	root	using	the	'make	install'	command	and	that	you	performed	a	reconfigure	boot	afterward.	Apcupsd	communicates	with	the	UPS	through	the	USB	generic	device,	ugen.	The	reconfigure	boot	performed	after	Apcupsd	installation	will	ensure	the	correct	device	nodes	are	created.	Once	your	UPS	has	been	recognized
in	dmesg	as	shown	above,	you	can	check	/dev/usb	to	see	if	the	device	nodes	have	appeared:	[user@sunblade	/]$	ls	/dev/usb/51d.2/*	cntrl0	cntrl0stat	devstat	if0in1	if0in1stat	(51d.2	is	the	vendor/product	id	for	APC	UPSes.)	Apcupsd	supports	USB	UPSes	on	Mac	OS	X	(Darwin)	10.4.x	and	higher.	Both	Intel	and	PowerPC	platforms	are	supported.	Some
specific	packages	are	necessary	when	building	Apcupsd	with	USB	support	on	Darwin.	You	must	install	libusb-0.1.12	which	can	be	obtained	from	MacPorts	()	(formerly	DarwinPorts)	or	Fink	()	or	downloaded	and	built	by	hand	().	You	must	not	use	libusb-1.x	or	higher	(apcupsd	does	not	support	the	new	1.0	APIs)	nor	any	version	earlier	than	0.1.12
(earlier	versions	have	a	bug	that	apcupsd	triggers).	Generally	that	means	you	must	use	exactly	0.1.12.	Note	that	Apcupsd	is	sensitive	to	the	install	location	of	libusb,	so	beware	if	you	change	it	from	the	default.	Apcupsd	should	be	built	using	gcc,	preferably	from	the	XCode	development	tools.	Currently	the	maintainer	is	using	gcc-4.0.1	from	XCode	2.4.
Other	versions	of	gcc	from	other	sources	may	also	work.	Configure	and	build	Apcupsd	normally,	as	described	in	Building	and	Installing	Apcupsd.	Be	sure	to	include	the	--enable-usb	flag	to	configure.	After	building,	install	Apcupsd	as	root	using	'make	install'	and	then	reboot.	During	installation,	Apcupsd	will	automatically	install	a	simple	dummy	kext
driver	designed	to	prevent	Apple's	monitoring	software	from	taking	over	the	UPS.	It	is	necessary	to	reboot	in	order	to	activate	the	kext.	Note	that	this	kext	will	be	automatically	removed	if	you	uninstall	Apcupsd	using	'make	uninstall',	allowing	Apple's	monitoring	tool	to	once	again	access	the	UPS.	After	installing	Apcupsd	as	described	above	and
rebooting,	plug	in	your	UPS	USB	cable.	You	should	notice	that	Darwin	does	NOT	display	the	battery	monitor	tool	in	the	menu	bar.	You	can	also	check	Apple	Menu	->	About	This	Mac	->	More	Info...	->	USB	to	ensure	that	your	UPS	appears	in	the	list	of	USB	devices.	In	general	it	is	recommended	to	obtain	a	prebuilt	binary	package	for	your	platform.
Given	how	apcupsd	must	integrate	into	the	shutdown	mechanism	of	the	operating	system	and	the	rate	at	which	such	mechanisms	are	changed	by	vendors,	the	platform	ports	in	the	apcupsd	tree	may	become	out	of	date.	In	some	cases,	binary	packages	are	provided	by	the	apcupsd	team	(RedHat,	Mandriva,	SuSE,	Windows,	Mac	OS	X).	For	other
platforms	it	is	recommended	to	check	your	vendor's	package	repository	and	third	party	repositories	for	recent	binary	packages	before	resorting	to	building	apcupsd	from	scratch.	Note	that	some	vendors	continue	to	distribute	ancient	versions	of	apcupsd	with	known	defects.	These	packages	should	not	be	used.	For	systems	based	on	RPM	packages,
such	as	Red	Hat	and	SuSE,	apcupsd	is	available	in	binary	RPM	format.	This	is	the	simplest	way	to	install.	If	you	have	no	previous	version	of	apcupsd	on	your	machine	and	are	creating	a	standalone	configuration,	simply	install	the	RPM	with	a	normal	'rpm	-ihv'	command.	You're	done,	and	can	now	skip	the	rest	of	this	chapter	and	go	straight	to	tweaking
your	run-time	configuration	file.	(see	After	Installation)	If	you	have	a	previous	installation,	you	can	upgrade	with	a	normal	'rpm	-Uhv',	but	this	may	not	upgrade	the	halt	script.	It	may	be	better	to	do	the	upgrade	as	a	remove	'rpm	-e'	followed	by	a	fresh	install	'rpm	-ihv'.	After	installation	of	the	binary	RPM,	please	verify	carefully	that	/etc/rc.d/init.d/halt
was	properly	updated	and	contains	new	script	lines	flagged	with	***APCUPSD***.	Since	there	is	no	standard	location	for	cgi-bin,	the	rpm	will	place	the	binary	CGI	programs	in	the	directory	/etc/apcupsd/cgi.	To	actually	use	them,	you	must	copy	or	move	them	to	your	actual	cgi-bin	directory,	which	on	many	systems	is	located	in	/home/httpd/cgi-bin.	The
Windows	version	of	apcupsd	is	distributed	as	a	simple	double-click	installer.	Installation	is	very	simple	and	straight-forward:	Simply	double-click	the	installer	executable	and	follow	the	instructions.	See	The	Windows	Version	of	apcupsd	for	further	details.	Installation	from	source	might	have	to	be	be	done	different	ways	depending	on	what	system	you
are	running.	The	basic	procedure	involves	getting	a	source	distribution,	running	the	configuration,	rebuilding,	and	installing.	For	building	the	system,	we	suggest	that	you	run	the	configure	and	make	processes	as	your	normal	UNIX	user	ID.	The	'make	install'	must	be	run	as	root.	But	if	your	normal	ID	has	an	environment	setup	for	using	the	C
compiler,	it's	simpler	to	do	that	than	to	set	up	root	to	have	the	correct	environment.	apcupsd	requires	gcc	and	g++	compilers	as	well	as	GNU	make.	Other	compilers	or	BSD	make	will	not	work.	GNU	make	is	sometimes	installed	as	gmake.	The	configure	script	will	check	for	this	and	will	inform	you	of	what	command	to	use	to	invoke	GNU	make.	The
basic	installation	from	a	tar	source	file	is	rather	simple:	Unpack	the	source	code	from	its	tar	archive.	Go	into	the	directory	containing	the	source	code.	Run	'./configure'	(with	appropriate	options	as	described	below)	'make'	or	'gmake''	as	instructed	by	configure	'su'	(i.e.	become	root)	Stop	any	running	instance	of	apcupsd.	The	command	to	do	this	will
look	like	'system-dependent-path/apcupsd	stop'	uninstall	any	old	apcupsd	This	is	important	since	the	default	install	locations	may	have	changed.	'make	install'	or	'gmake	install'	edit	your	/etc/apcupsd/apcupsd.conf	file	if	necessary	ensure	that	your	halt	script	is	properly	updated	Start	the	new	apcupsd	with:	'system-dependent-path/apcupsd	start'	If	all
goes	well,	the	'./configure'	will	correctly	determine	which	operating	system	you	are	running	and	configure	the	source	code	appropriately.	configure	currently	recognizes	the	systems	listed	below	in	the	Operating	System	Specifics	section	of	this	chapter	and	adapts	the	configuration	appropriately.	Check	that	the	configuration	report	printed	at	the	end
of	the	configure	process	corresponds	to	your	choice	of	directories,	options,	and	that	it	has	correctly	detected	your	operating	system.	If	not,	redo	the	configure	with	the	appropriate	options	until	your	configuration	is	correct.	Please	note	that	a	number	of	the	configure	options	preset	apcupsd.conf	directive	values	in	an	attempt	to	automatically	adapt
apcupsd	as	best	possible	to	your	system.	You	can	change	the	values	in	apcupsd.conf	at	a	later	time	without	redoing	the	configuration	process	by	simply	editing	the	apcupsd.conf	file.	Other	configuration	options	can	be	used	to	set	up	the	installation	of	HTML	documentation	and	optional	modules,	notably	the	CGI	interface	that	enables	the	UPS	state	to
be	queried	via	the	Web.	You	will	find	a	complete	reference	later	in	this	chapter.	In	general,	you	will	probably	want	to	supply	a	more	elaborate	configure	statement	to	ensure	that	the	modules	you	want	are	built	and	that	everything	is	placed	into	the	correct	directories.	On	Red	Hat,	a	fairly	typical	configuration	command	would	look	like	the	following:
CFLAGS="-g	-O2"	LDFLAGS="-g"	./configure	\	--enable-usb	\	--with-upstype=usb	\	--with-upscable=usb	\	--prefix=/usr	\	--sbindir=/sbin	\	--with-cgi-bin=/var/www/cgi-bin	\	--enable-cgi	\	--with-log-dir=/etc/apcupsd	By	default,	'make	install'	will	install	the	executable	files	in	/sbin,	the	manuals	in	/usr/man,	and	the	configuration	and	script	files	in
/etc/apcupsd.	In	addition,	if	your	system	is	recognized,	certain	files	such	as	the	startup	script	and	the	system	halt	script	will	be	placed	in	appropriate	system	directories	(usually	subdirectories	of	/etc/rc.d).	There	are	a	number	of	things	that	you	can	do	to	check	if	the	installation	(make	install)	went	well.	The	fist	is	to	check	where	the	system	has
installed	apcupsd	using	'which'	and	'whereis'.	On	my	Red	Hat	system,	you	should	get	the	following	(lines	preceded	with	a	$	indicate	what	you	type):	$	which	apcupsd	/sbin/apcupsd	$	whereis	apcupsd	apcupsd:	/sbin/apcupsd	/etc/apcupsd	/etc/apcupsd.conf	/etc/apcupsd.status	/usr/man/man8/apcupsd.8.gz	/usr/man/man8/apcupsd.8	If	you	find	an
apcupsd	in	/usr/sbin,	/usr/local/sbin,	/usr/lib,	or	another	such	directory,	it	is	probably	a	piece	of	an	old	version	of	apcupsd	that	you	can	delete.	If	you	are	in	doubt,	delete	it,	then	rerun	the	'make	install'	to	ensure	that	you	haven't	deleted	anything	needed	by	the	new	apcupsd.	Please	note	that	the	files	specified	above	assume	the	default	installation
locations.	As	a	final	check	that	the	'make	install'	went	well,	you	should	check	your	halt	script	(in	/etc/rc.d	on	SUSE	systems,	and	in	/etc/rc.d/init.d	on	Red	Hat	systems)	to	see	that	the	appropriate	lines	have	been	inserted	in	the	correct	place.	Modification	of	the	halt	script	is	important	so	that	at	the	end	of	the	shutdown	procedure,	apcupsd	will	be	called
again	to	command	the	UPS	to	turn	off	the	power.	This	should	only	be	done	in	a	power	failure	situation	as	indicated	by	the	presence	of	the	/etc/powerfail	file,	and	is	necessary	if	you	want	your	machine	to	automatically	be	restarted	when	the	power	returns.	On	a	Red	Hat	system,	the	lines	containing	the	#	***apcupsd***	should	be	inserted	just	before	the
final	halt	command:	#	Remount	read	only	anything	that's	left	mounted.	#echo	"Remounting	remaining	filesystems	(if	any)	readonly"	mount	|	awk	'/ext2/	{	print	$3	}'	|	while	read	line;	do	mount	-n	-o	ro,remount	$line	done	#	See	if	this	is	a	powerfail	situation.	#	***apcupsd***	if	[-f	/etc/apcupsd/powerfail];	then	#	***apcupsd***	echo	#	***apcupsd***
echo	"APCUPSD	will	now	power	off	the	UPS"	#	***apcupsd***	echo	#	***apcupsd***	/etc/apcupsd/apccontrol	killpower	#	***apcupsd***	echo	#	***apcupsd***	echo	"Please	ensure	that	the	UPS	has	powered	off	before	rebooting"	#	***apcupsd***	echo	"Otherwise,	the	UPS	may	cut	the	power	during	the	reboot!!!"	#	***apcupsd***	echo	#	***apcupsd***
fi	#	***apcupsd***	#	Now	halt	or	reboot.	echo	"$message"	if	[-f	/fastboot];	then	echo	"On	the	next	boot	fsck	will	be	skipped."	elif	[-f	/forcefsck];	then	echo	"On	the	next	boot	fsck	will	be	forced."	fi	The	purpose	of	modifying	the	system	halt	files	is	so	that	apcupsd	will	be	recalled	after	the	system	is	in	a	stable	state.	At	that	point,	apcupsd	will	instruct
the	UPS	to	shut	off	the	power.	This	is	necessary	if	you	wish	your	system	to	automatically	reboot	when	the	mains	power	is	restored.	If	you	prefer	to	manually	reboot	your	system,	you	can	skip	this	final	system	dependent	installation	step	by	specifying	the	disable-install-distdir	option	on	the	'./configure'	command	(see	below	for	more	details).	The	above
pertains	to	Red	Hat	systems	only.	There	are	significant	differences	in	the	procedures	on	each	system,	as	well	as	the	location	of	the	halt	script.	Also,	the	information	that	is	inserted	in	your	halt	script	varies	from	system	to	system.	Other	systems	such	as	Solaris	require	you	the	make	the	changes	manually,	which	has	the	advantage	that	you	won't	have
any	unpleasant	surprises	in	your	halt	script	should	things	go	wrong.	Please	consult	the	specific	system	dependent	README	files	for	more	details.	Please	note	that	if	you	install	from	RPMs	for	a	slave	machine,	you	will	need	to	remove	the	changes	that	the	RPM	install	script	made	(similar	to	what	is	noted	above)	to	the	halt	script.	This	is	because	on	a
slave	machine	there	is	no	connection	to	the	UPS,	so	there	is	no	need	to	attempt	to	power	off	the	UPS.	That	will	be	done	by	the	master.	All	the	available	configure	options	can	be	printed	by	entering:	./configure	--help	When	specifying	options	for	'./configure',	if	in	doubt,	don't	put	anything,	since	normally	the	configuration	process	will	determine	the
proper	settings	for	your	system.	The	advantage	of	these	options	is	that	it	permits	you	to	customize	your	version	of	apcupsd.	If	you	save	the	'./configure'	command	that	you	use	to	create	apcupsd,	you	can	quickly	reset	the	same	customization	in	the	next	version	of	apcupsd	by	simply	re-using	the	same	command.	The	following	command	line	options	are
available	for	configure	to	customize	your	installation.	--prefix=path	This	defines	the	directory	for	the	non-executable	files	such	as	the	manuals.	The	default	is	/usr.	--sbindir=path	This	defines	the	directory	for	the	executable	files	such	as	apcupsd.	The	default	is	/sbin.	You	may	be	tempted	to	place	the	executable	files	in	/usr/sbin	or	/usr/local/sbin.	Please
use	caution	here	as	these	directories	may	be	unmounted	during	a	shutdown	and	thus	may	prevent	the	halt	script	from	calling	apcupsd	to	turn	off	the	UPS	power.	Though	your	data	will	be	protected,	in	this	case,	your	system	will	probably	not	be	automatically	rebooted	when	the	power	returns	--enable-cgi	This	enables	the	building	of	the	CGI	programs
that	permit	Web	browser	access	to	apcupsd	data.	This	option	is	not	necessary	for	the	proper	execution	of	apcupsd.	--with-cgi-bin=path		The	with-cgi-bin	configuration	option	allows	you	to	define	the	directory	where	the	CGI	programs	will	be	installed.	The	default	is	/etc/apcupsd,	which	is	probably	not	what	you	want.	--enable-apcsmart		Turns	on
generation	of	the	APC	Smart	driver	(default).	--enable-dumb	Turns	on	generation	of	the	dumb	signalling	driver	code	(default).	--enable-usb	Turns	on	generation	of	the	USB	driver	code.	By	default	this	is	disabled.	--enable-net	Turns	on	generation	of	the	NIS	network	driver	for	slaves.	For	each	slave,	this	is	the	only	driver	needed.	This	driver	works	by
reading	the	information	from	the	the	configured	master	using	the	NIS	(Network	Information	Services)	interface.	--enable-snmp	Turns	on	generation	of	the	SNMP	driver.	This	driver	accesses	the	UPS	over	the	network	using	SNMP.	This	is	compatible	only	with	UPSes	equipped	with	an	SNMP	or	Web/SNMP	management	card.	By	default	this	is	enabled.	-
-enable-pcnet	Turns	on	generation	of	the	PCNET	(PowerChute	Network	Shutdown)	driver.	This	driver	accesses	the	UPS	over	the	network	using	APC's	custom	protocol.	This	driver	can	be	used	as	an	alternative	to	SNMP	for	UPSes	equipped	with	a	modern	Web/SNMP	management	card.	--enable-modbus		Turns	on	generation	of	the	MODBUS/RS232
driver	(default)	--enable-modbus-usb		Turns	on	generation	of	the	MODBUS/USB	driver	--enable-test	This	turns	on	a	test	driver	that	is	used	only	for	debugging.	By	default	it	is	disabled.	--enable-gapcmon		This	option	enables	building	the	GTK	GUI	front-end	for	apcupsd.	Building	this	package	requires	numerous	GNOME	libraries.	The	default	is	disabled.
--enable-apcagent		This	option	enables	building	the	apcagent	menubar	application	on	Mac	OS	X	platforms.	The	default	is	disabled.	--with-libwrap=path,	--with-libwrap		This	option	when	enabled	causes	apcupsd	to	be	built	with	the	TCP	WRAPPER	library	for	enhanced	security.	In	most	cases,	the	path	is	optional	since	configure	will	determine	where	the
libraries	are	on	most	systems.	--with-nologin=path		This	option	allows	you	to	specify	where	apcupsd	will	create	the	nologin	file	when	logins	are	prohibited.	The	default	is	/etc	--with-pid-dir=path		This	option	allows	you	to	specify	where	apcupsd	will	create	the	process	id	(PID)	file	to	prevent	multiple	copies	from	running.	The	default	is	system	dependent
but	usually	/var/run.	--with-log-dir=path		This	option	allows	you	to	specify	where	apcupsd	will	create	the	EVENTS	and	STATUS	log	files.	The	default	is	/etc/apcupsd.	This	option	simply	sets	the	default	of	the	appropriate	path	in	the	apcupsd.conf	file,	which	can	be	changed	at	any	later	time.	--with-lock-dir=path		This	option	allows	you	to	specify	where
apcupsd	will	create	the	serial	port	lock	file.	The	default	is	system-dependent	but	usually	/var/lock.	This	option	simply	sets	the	appropriate	path	in	the	apcupsd.conf	file,	which	can	be	changed	at	any	later	time.	--with-pwrfail-dir=path		This	option	allows	you	to	specify	where	apcupsd	will	create	the	powerfail	file	when	a	power	failure	occurs.	The	default
is	system	dependent	but	usually	/etc.	--with-serial-dev=device-name		This	option	allows	you	to	specify	where	apcupsd	will	look	for	the	serial	device	that	talks	to	the	UPS.	The	default	is	system	dependent,	but	often	/dev/ttyS0.	This	option	simply	sets	the	appropriate	device	name	in	the	apcupsd.conf	file,	which	can	be	changed	at	any	later	time.	--with-nis-
port=port		This	option	allows	you	to	specify	what	port	apcupsd	will	use	for	the	Network	Information	Server	(the	CGI	programs).	The	default	is	system	dependent	but	usually	3551	because	that	port	has	been	officially	assigned	to	apcupsd	by	the	IANA.	This	option	simply	sets	the	appropriate	port	in	the	apcupsd.conf	file,	which	can	be	changed	at	any
later	time.	--with-nisip=ip-address		This	option	allows	you	to	specify	the	value	that	will	be	placed	on	then	NISIP	directive	in	the	configuration	file.	The	default	is	0.0.0.0.	No	checking	is	done	on	the	value	entered,	so	you	must	ensure	that	it	is	a	valid	IP	address.	--with-net-port=port		This	option	allows	you	to	specify	what	port	apcupsd	will	use	for	Master
and	Slave	communications.	The	default	is	system	dependent	but	usually	6666.	This	option	simply	sets	the	appropriate	port	in	the	apcupsd.conf	file,	which	can	be	changed	at	any	later	time.	--with-upstype=type		This	option	allows	you	to	specify	the	type	of	UPS	that	will	be	connected	to	your	computer.	The	default	is:	smartups.	This	option	simply	sets	the
appropriate	UPS	type	in	the	apcupsd.conf	file,	which	can	be	changed	at	any	later	time.	--with-upscable=cable		This	option	allows	you	to	specify	what	cable	you	are	using	to	connect	to	the	UPS.	The	default	is:	smart.	This	option	simply	sets	the	appropriate	UPS	cable	in	the	apcupsd.conf	file,	which	can	be	changed	at	any	later	time.	--disable-install-distdir
	This	option	modifies	the	apcupsd	Makefiles	disable	installation	of	the	distribution	(platform)	directory.	Generally,	this	used	to	do	a	full	installation	of	apcupsd	except	the	final	modification	of	the	operating	system	files	(normally	/etc/rc.d/halt,	etc.).	This	is	useful	if	your	operating	system	is	not	directly	supported	by	apcupsd	or	if	you	want	to	run	two

copies	of	apcupsd	on	the	same	system.	This	option	can	also	be	used	by	those	of	you	who	prefer	to	manually	reboot	your	system	after	a	power	failure	or	who	do	not	want	to	modify	your	system	halt	files.	For	most	systems,	we	recommend	the	following	options:	./configure	--prefix=/usr	--sbindir=/sbin	--enable-usb	and	you	can	optionally	build	and	install
the	CGI	programs	as	follows:	./configure	--prefix=/usr	--sbindir=/sbin	--enable-usb	\	--enable-cgi	--with-cgi-bin=/home/httpd/cgi-bin	Some	systems	require	unusual	options	for	compilation	or	linking	that	the	'./configure'	script	does	not	know	about.	You	can	specify	initial	values	for	variables	by	setting	them	in	the	environment.	Using	a	Bourne-compatible
shell,	you	can	do	that	on	the	command	line	like	this:	CFLAGS="-O2	-Wall"	LDFLAGS=	./configure	Or	on	systems	that	have	the	env	program,	you	can	do	it	like	this:	env	CPPFLAGS=-I/usr/local/include	LDFLAGS=-s	./configure	Or	for	example	on	the	Sun	Solaris	system,	you	can	use:	setenv	CFLAGS	-O2	setenv	LDFLAGS	-O	./configure	You	can	get	a
listing	of	all	available	options	by	doing:	./configure	--help	or	simply	see	the	previous	section	of	this	manual.	With	the	exception	of	Linux	SUSE	and	Linux	Red	Hat	systems	used	by	the	developers,	we	rely	on	users	to	help	create	installation	scripts	and	instructions	as	well	as	to	test	that	apcupsd	runs	correctly	on	their	system.	As	you	can	imagine,	most	of
these	people	are	system	administrators	rather	than	developers	so	they	are	very	busy	and	don't	always	have	time	to	test	the	latest	releases.	With	that	in	mind,	we	believe	that	you	will	find	that	a	lot	of	very	valuable	work	has	been	already	done	to	make	your	installation	much	easier	(and	probably	totally	automatic).	Below,	you	will	find	a	list	of	operating
systems	for	which	we	have	received	installation	files:	This	port	is	complete	and	is	being	used	by	several	users.	You	will	need	to	install	and	use	GNU	make	(aka	gmake)	instead	of	the	BSD	make	supplied	with	the	system.	On	the	FreeBSD	OS,	there	is	no	known	way	for	a	user	program	to	get	control	when	all	the	disks	are	synced.	This	is	needed	for
apcupsd	to	be	able	to	issue	the	killpower	command	to	the	UPS	so	that	the	UPS	shuts	off	the	power.	To	accomplish	the	same	thing	on	FreeBSD	systems,	make	sure	you	have	a	SmartUPS	and	that	your	UPS	shutdown	grace	period	is	set	sufficiently	long	so	that	you	system	will	power	down	(usually	2	minutes),	the	use	the	--kill-on-powerfail	option	on	the
apcupsd	command	line.	Status	of	this	port	is	unknown.	You	will	need	to	install	and	use	GNU	make	(aka	gmake)	instead	of	the	BSD	make	supplied	with	the	system.	On	OS	X	(Darwin),	apcupsd	can	be	built	with	configure	defaults.	The	USB	driver	can	be	enabled,	as	per	the	directions	on	Mac	OS	X	(Darwin)	USB	Configuration	Apcupsd	may	be	usable	on
OS	X	with	a	smart	serial	device,	but	certainly	does	work	as	a	NIS	client	or	using	a	USB	interface.	The	startup	information	will	be	installed	in	/Library/StartupItems/apcupsd	which	is	part	of	darwin's	SystemStartup.	You	will	need	to	install	and	use	GNU	make	(aka	gmake)	instead	of	the	BSD	make	supplied	with	the	system.	Ensure	that	you	read	the
distributions/openbsd/README	file	before	running	apcupsd.	There	are	some	critical	differences	in	how	the	OpenBSD	implementation	operates	when	the	UPS	batteries	are	exhausted.	Failure	to	take	this	into	account	may	result	in	the	system	not	being	fully	halted	when	power	is	lost.	Red	Hat	systems	are	fully	supported,	and	by	following	the	standard
installation	instructions	given	above,	you	should	experience	few	or	no	problems.	Slackware	systems	are	fully	supported,	and	by	following	the	standard	installation	instructions	given	above,	you	should	experience	few	or	no	problems.	SUSE	systems	are	fully	supported,	and	by	following	the	standard	installation	instructions	given	above,	you	should
experience	few	or	no	problems.	Please	read	this	before	attempting	to	compile	or	install	the	beta	software.	It	contains	important	information	that	will	make	your	efforts	easier.	Before	running	'./configure',	please	be	sure	that	you	do	not	have	/usr/ucb	on	your	path.	This	may	cause	the	configure	to	choose	the	wrong	shutdown	program.	If	configure
detects	that	/usr/usb	is	on	your	path,	it	will	print	a	warning	message.	Please	follow	the	advice	to	avoid	shutdown	problems.	Your	normal	UNIX	user	ID	must	own	the	source	tree	directories,	and	you	must	have	the	normal	development	tools	in	your	path.	This	includes	make,	the	compiler,	the	M4	preprocessor,	the	linker,	and	ar	or	ranlib.	If	the	user	you
are	logged	in	as	can	compile	and	link	a	C	program	from	a	source	file,	then	you	have	all	the	required	tools	available.	You	will	want	to	install	the	executables	in	a	directory	that	remains	mounted	during	the	shutdown.	Solaris	will	unmount	almost	everything	except	the	root	directories.	Since	the	ability	to	power	the	UPS	off	requires	access	to	the
executable	programs,	they	need	to	be	in	a	directory	that	will	never	be	unmounted.	And	since	they	should	also	be	in	a	directory	that	normal	users	cannot	get	into,	/sbin	is	the	default.	However,	please	be	aware	that	if	you	want	to	follow	Sun's	filesystem	conventions	you	would	use	the	following:	./configure	\	--prefix=/opt/apcupsd	\	--
sbindir=/etc/opt/apcupsd/sbin	\	--sysconfdir=/etc/opt/apcupsd	\	--with-cgi-bin=/opt/apcupsd/cgi-bin	The	way	to	setup	the	/sbin	directory	as	the	executables	directory	is	to	pass	configure	the	--sbindir=/sbin	option.	No	other	arguments	should	be	required,	and	your	setup	and	platform	should	be	detected	automatically	by	configure.	Once	you	have	run
configure,	you	will	need	to	do	a	'gmake'.	Once	the	make	has	completed	with	no	errors,	you	must	su	to	root	to	complete	the	install.	After	the	su,	you	may	not	have	a	path	to	the	make	program	anymore.	In	that	case,	you	should	do	the	'gmake	install'	step	as:	gmake	install	Once	the	install	completes,	you	must	edit	the	/sbin/rc0	script	as	detailed	below,
then	exit	from	the	su'ed	shell.	In	order	to	support	unattended	operation	and	shutdown	during	a	power	failure,	it's	important	that	the	UPS	remove	power	after	the	shutdown	completes.	This	allows	the	unattended	UPS	to	reboot	the	system	when	power	returns	by	re-powering	the	system.	Of	course,	you	need	autoboot	enabled	for	your	system	to	do	this,
but	all	Solaris	systems	have	this	by	default.	If	you	have	disabled	this	on	your	system,	please	re-enable	it.	To	get	the	UPS	to	remove	power	from	the	system	at	the	correct	time	during	shutdown,	i.e.,	after	the	disks	have	done	their	final	sync,	we	need	to	modify	a	system	script.	This	script	is	/sbin/rc0.	We	do	not	have	access	to	every	version	of	Solaris,	but
we	believe	this	file	will	be	almost	identical	on	every	version.	Please	let	us	know	if	this	is	not	true.	At	the	very	end	of	the	/sbin/rc0	script,	you	should	find	lines	just	like	the	following:	#	unmount	file	systems.	/usr,	/var	and	/var/adm	are	not	unmounted	by	umountall	#	because	they	are	mounted	by	rcS	(for	single	user	mode)	rather	than	#	mountall.	#	If
this	is	changed,	mountall,	umountall	and	rcS	should	also	change.	/sbin/umountall	/sbin/umount	/var/adm	>/dev/null	2>\&1	/sbin/umount	/var	>/dev/null	2>\&1	/sbin/umount	/usr	>/dev/null	2>\&1	echo	'The	system	is	down.'	We	need	to	insert	the	following	lines	just	before	the	last	'echo':	#see	if	this	is	a	powerfail	situation	if	[-f	/etc/apcupsd/powerfail];
then	echo	echo	"APCUPSD	will	power	off	the	UPS"	echo	/etc/apcupsd/apccontrol	killpower	echo	echo	"Please	ensure	that	the	UPS	has	powered	off	before	rebooting"	echo	"Otherwise,	the	UPS	may	cut	the	power	during	the	reboot!!!"	echo	fi	We	have	included	these	lines	in	a	file	called	rc0.solaris	in	the	distributions/sun	subdirectory	of	the	source	tree.
You	can	cut	and	paste	them	into	the	/sbin/rc0	file	at	the	correct	place,	or	yank	and	put	them	using	vi	or	any	other	editor.	Note	that	you	must	be	root	to	edit	this	file.	You	must	be	absolutely	sure	you	have	them	in	the	right	place.	If	your	/sbin/rc0	file	does	not	look	like	the	lines	shown	above,	do	not	modify	the	file.	Instead,	email	a	copy	of	the	file	to	the
maintainers,	and	we	will	attempt	to	figure	out	what	you	should	do.	If	you	mess	up	this	file,	the	system	will	not	shut	down	cleanly,	and	you	could	lose	data.	Don't	take	the	chance.	You	will	then	need	to	make	the	normal	changes	to	the	/etc/apcupsd/apcupsd.conf	file.	This	file	contains	the	configuration	settings	for	the	package.	It	is	important	that	you	set
the	values	to	match	your	UPS	model	and	cable	type,	and	the	serial	port	that	you	have	attached	the	UPS	to.	People	have	used	both	/dev/ttya	and	/dev/ttyb	with	no	problems.	You	should	be	sure	that	logins	are	disabled	on	the	port	you	are	going	to	use,	otherwise	you	will	not	be	able	to	communicate	with	the	UPS.	If	you	are	not	sure	that	logins	are
disabled	for	the	port,	run	the	'admintool'	program	as	root,	and	disable	the	port.	The	'admintool'	program	is	a	GUI	administration	program,	and	required	that	you	are	running	CDE,	OpenWindows,	or	another	XWindows	program	such	as	KDE.	Solaris	probes	the	serial	ports	during	boot,	and	during	this	process,	it	toggles	some	handshaking	lines	used	by
dumb	UPSes.	As	a	result,	particularly	for	simple	signalling	"dumb"	UPSes	it	seems	to	kick	it	into	a	mode	that	makes	the	UPS	think	it's	either	in	a	calibration	run,	or	some	self-test	mode.	Since	at	this	point	we	are	really	not	communicating	with	the	UPS,	it's	pretty	hard	to	tell	what	happened.	But	it's	easy	to	prevent	this,	and	you	should.	Disconnect	the
UPS,	and	boot	the	system.	When	you	get	to	a	login	prompt,	log	in	as	root.	Type	the	following	command:	eeprom	com1-noprobe=true	or	eeprom	com2-noprobe=true	depending	on	which	com	port	your	UPS	is	attached	to.	Then	sync	and	shutdown	the	system	normally,	reattach	the	UPS,	and	reboot.	This	should	solve	the	problem.	However,	we	have	some
reports	that	recent	versions	of	Solaris	(7	&	8)	appear	to	have	removed	this	eeprom	option	and	there	seems	to	be	no	way	to	suppress	the	serial	port	probing	during	boot.	At	this	point,	you	should	have	a	complete	installation.	The	daemon	will	load	automatically	at	the	next	boot.	Watch	for	any	error	messages	during	boot,	and	check	the	event	logs	in
/etc/apcupsd.	If	everything	looks	OK,	you	can	try	testing	the	package	by	removing	power	from	the	UPS.	NOTE!	if	you	have	a	voltage-signalling	UPS,	please	run	the	first	power	tests	with	your	computer	plugged	into	the	wall	rather	than	into	the	UPS.	This	is	because	dumb	serial-port	UPSes	have	a	tendency	to	power	off	if	your	configuration	or	cable	are
not	correct.	As	a	user,	your	input	is	very	helpful	in	solving	problems	with	the	package,	and	providing	suggestions	and	future	directions	for	the	development	of	the	package.	We	are	striving	to	provide	a	useful	package	that	works	across	all	platforms,	and	welcome	your	feedback.	During	the	'./configure',	if	apcupsd	does	not	find	one	of	the	systems	for
which	it	has	specific	installation	programs,	it	will	set	the	Operating	System	to	unknown	and	will	use	the	incomplete	installation	scripts	that	are	in	platforms/unknown.	You	will	be	on	your	own,	or	you	can	ask	the	developers	list	(apcupsd-users@lists.sourceforge.net)	for	installation	instructions.	This	directory	also	contains	a	hint	file	for	Linux	From
Scratch,	which	could	be	helpful	for	other	systems	as	well.	Appropriate	scripts	(actually	Windows	batch	files)	are	included	with	the	Apcupsd	Win32	installer	package.	Once	you	have	installed	apcupsd,	either	from	a	binary	package	or	by	building	from	source,	your	next	step	should	be	to	inspect	your	/etc/apcupsd/apcupsd.conf	file	to	make	sure	it	is	valid.
You	can	read	the	complete	reference	on	configuration	directives	(Configuration	Directive	Reference),	but	if	you	are	setting	up	a	normal	standalone	configuration	you	should	only	need	to	check	(and	possibly	fix)	the	first	three	items	listed	below.	Your	UPSTYPE	should	be	the	UPS's	protocol	type:	dumb,	apcsmart,	usb,	net,	pcnet,	or	snmp.	Your
UPSCABLE	should	be	the	type	of	cable	you	are	using.	DEVICE	should	be	set	to	the	path	of	the	device	node	(usually	in	/dev)	to	use	to	communicate	with	the	UPS.	This	is	used	primarily	for	serial	port	connections.	If	you	have	a	USB	device,	it	is	better	not	to	specify	a	DEVICE	directive	by	leaving	it	black	or	commenting	it	out.	Apcupsd	will	automatically
search	for	your	device	in	the	standard	places.	If	you	specify	a	DEVICE,	it	should	be	the	name	of	the	device	that	apcupsd	is	to	use	to	communicate	with	the	UPS.	If	the	first	time	you	execute	apcupsd,	you	get	a	message	to	the	effect	that	the	Apcupsd	USB	driver	is	missing,	it	means	that	you	most	likely	forgot	to	put	--enable-usb	on	your	'./configure'
command	line.	The	Configuration	Examples	chapter	of	this	manual	provides	the	essential	characteristics	of	each	main	type	of	configuration	file.	After	those	elements	are	correct,	apcupsd	should	run,	and	then	it	is	only	a	matter	of	customization	of	your	setup.	The	final	consideration	for	a	automatic	reboot	after	a	full	power	down	is	to	ensure	that	your
computer	will	automatically	reboot	when	the	power	is	restored.	This	is	not	the	normal	behavior	of	most	computers	as	shipped	from	the	factory.	Normally	after	the	power	is	cut	and	restored,	you	must	explicitly	press	a	button	for	the	power	to	actually	be	turned	on.	You	can	test	your	computer	by	powering	it	down;	shutting	off	the	power	(pull	the	plug);
then	plugging	the	cord	back	in.	If	your	computer	immediately	starts	up,	good.	There	is	nothing	more	to	do.	If	your	computer	does	not	start	up,	manually	turn	on	the	power	(by	pressing	the	power	on	button)	and	enter	your	computer's	SETUP	program	(often	by	pressing	DEL	during	the	power	up	sequence;	sometimes	by	pressing	F10).	You	must	then
find	and	change	the	appropriate	configuration	parameter	to	permit	instant	power	on.	Normally,	this	is	located	under	the	BOOT	menu	item,	and	will	be	called	something	such	as	Restore	on	AC/Power	Loss	or	Full-On.	The	exact	words	will	vary	according	to	the	ROM	BIOS	provider.	Generally	you	will	have	three	options:	Last	State,	Power	On,	and	Power
Off.	Although	Last	State	should	normally	work,	we	recommend	setting	your	computers	to	Power	On.	This	means	that	whenever	the	power	is	applied	they	are	on.	The	only	way	to	shut	them	off	is	to	pull	the	plug	or	to	have	a	special	program	that	powers	them	off	(/sbin/poweroff	on	Linux	systems).	If	after	making	all	the	changes	suggested	above,	you
cannot	get	your	computer	to	automatically	reboot,	you	might	examine	your	halt	script	(/etc/rc.d/init.d/halt	in	the	case	of	Red	Hat	Linux)	and	see	if	the	final	line	that	performs	the	halt	or	reboot	contains	the	-p	option	for	powering	down	the	computer.	It	should	not	with	the	logic	used	by	apcupsd,	but	if	it	does,	the	-p	option	could	cause	your	computer	to
power	off	while	the	UPS	is	still	suppling	power	(i.e.	before	the	UPS	kills	the	power).	Depending	on	the	setting	of	your	BIOS,	it	may	prevent	your	computer	from	restarting	when	the	power	returns.	As	already	mentioned,	this	should	not	apply,	but	in	case	of	problems	it	is	worth	a	try.	The	simplest	way	to	invoke	apcupsd	is	from	the	command	line	by
entering:	/sbin/apcupsd	To	do	so,	you	must	be	root.	However,	normally,	you	will	want	apcupsd	started	automatically	when	your	system	boots.	On	some	systems	with	installation	support	(e.g.	SUSE	and	Red	Hat),	the	installation	procedure	will	create	a	script	file	that	you	will	be	automatically	invoked	when	your	system	reboots.	On	other	systems,	you
will	have	to	invoke	apcupsd	from	your	rc.local	script.	On	Red	Hat	systems,	this	script	file	that	automatically	invokes	apcupsd	on	system	start	and	stops	is	/etc/rc.d/init.d/apcupsd	To	start	apcupsd	manually	(as	you	will	probably	do	immediately	following	the	installation),	enter	the	following:	/etc/rc.d/init.d/apcupsd	start	To	understand	how	this	file	is
automatically	invoked	at	system	startup	and	shutdown,	see	the	man	pages	for	chkconfig(8).	On	SUSE	systems,	the	script	file	that	automatically	invokes	apcupsd	on	system	start	and	stops	is	/etc/rc.d/apcupsd.	To	start	apcupsd	manually	(as	you	will	probably	do	immediately	following	the	installation),	enter	the	following:	/etc/rc.d/apcupsd	start	Normally,
when	properly	installed,	apcupsd	will	be	started	and	stopped	automatically	by	your	system.	Unfortunately,	the	details	are	different	for	each	system.	Below,	we	give	the	commands	for	selected	systems.	Alternatively,	there	are	simple	stopapcupsd	and	startapcupsd	scripts	in	the	examples	directory,	or	you	can	modify	one	of	the	scripts	in	the	distributions
directory	to	meet	your	needs.	To	stop	apcupsd	you	can	do	the	following:	On	Red	Hat	systems:	/etc/rc.d/init.d/apcupsd	stop	On	SUSE	systems:	/etc/rc.d/apcupsd	stop	Please	see	the	Testing	Apcupsd	chapter	for	more	details	on	insuring	that	apcupsd	is	running	properly.	If	you	have	a	USB	UPS,	the	essential	elements	of	your	apcupsd.conf	file	should	look
like	the	following:	##	apcupsd.conf	v1.1	##	UPSCABLE	usb	UPSTYPE	usb	DEVICE	LOCKFILE	/var/lock	UPSCLASS	standalone	UPSMODE	disable	Notice	that	we	have	not	specified	a	device.	In	doing	so,	apcupsd	will	try	all	the	well	known	USB	ports.	We	strongly	recommend	you	use	this	(empty	device	address)	form	unless	you	have	a	good	reason	to
do	otherwise.	Please	use	the	explicit	specifications	of	a	device	only	if	you	know	exactly	what	you	are	doing.	In	general,	it	is	much	easier	to	let	apcupsd	find	the	device	itself.	Please	see	USB	Configuration	for	detailed	help	on	setting	up	your	system	to	work	with	a	USB	UPS.	If	you	have	a	Smart	UPS	using	the	serial	cable	supplied	by	APC,	or	you	build	a
CUSTOM	SMART	cable	outlined	in	the	cables	chapter,	a	very	simple	configuration	file	would	look	like	the	following:	##	apcupsd.conf	v1.1	##	UPSCABLE	smart	UPSTYPE	apcsmart	DEVICE	/dev/ttyS0	LOCKFILE	/var/lock	UPSCLASS	standalone	UPSMODE	disable	Normally	you	would	have	many	more	configuration	directives	to	completely	customize
your	installation,	but	this	example	shows	you	the	minimum	required.	If	you	have	a	simple	signaling	or	dumb	UPS	such	as	a	BackUPS,	you	will	need	to	know	exactly	what	cable	you	have	and	specify	it	on	the	UPSCABLE	directive.	Please	see	the	list	of	UPSes	versus	cables	in	the	beginning	of	this	document	for	more	information.	The	cable	number	is
normally	stamped	in	the	plastic	at	one	end	of	the	cable.	If	you	specify	the	wrong	cable,	it	is	very	likely	that	at	the	first	power	failure,	your	computer	will	be	immediately	shutdown.	This	is	an	unfortunate	consequence	of	the	dumb	signaling	mode.	To	avoid	this,	first	replace	/etc/apcupsd/apccontrol	with	safe.apccontrol	found	in	the	examples	directory,
then	test	until	everything	works	correctly.	Once	you	have	the	correct	cable,	be	sure	to	remember	to	reinstall	the	correct	apccontrol	file	and	test	that	your	computer	is	correctly	shutdown	during	a	power	failure.	##	apcupsd.conf	v1.1	##	UPSCABLE	(number	of	cable	you	have)	UPSTYPE	dumb	DEVICE	/dev/ttyS0	LOCKFILE	/var/lock	UPSCLASS
standalone	UPSMODE	disable	If	your	cable	does	not	have	low	battery	detection,	as	is	the	case	with	some	older	models,	you	will	also	need	to	define	TIMEOUT	nnn	where	you	set	nn	to	be	the	number	of	seconds	on	a	power	failure	after	which	a	shutdown	is	effected.	Normally	you	would	have	many	more	configuration	directives	to	completely	customize
your	installation,	but	this	example	shows	you	the	minimum	required.	NIS	(Network	Information	Server)	mode	allows	for	communication	between	instances	of	apcupsd	running	on	different	hosts.	Only	one	of	those	hosts,	the	server,	needs	to	talk	to	the	UPS	directly.	The	others,	clients,	obtain	information	about	the	state	of	the	UPS	by	querying	the
server.	NIS	is	not	related	to	Sun's	NIS/YP	services.	NIS	clients	and	servers	require	that	apcupsd	be	compiled	with	the	Net	Driver	--enable-net.	This	is	typically	enabled	by	default.	The	NIS	server	is	connected	to	the	UPS	and	should	be	configured	exactly	as	a	standalone	configuration,	but	with	NETSERVER	on.	In	all	other	respects,	the	server	should	be
configured	in	standalone	mode.	You	may	also	set	the	NIS	server	specific	options	NISIP	to	restrict	which	IP	address	of	the	server	which	apcupsd	listens	on.	The	default,	0.0.0.0,	means	to	list	on	all	of	the	server	host's	IP	addresses;	NISPORT	(default	3551)	to	set	which	TCP	port	the	server	listens	on;	and	EVENTSFILE	and	EVENTSFILEMAX	to	provide
information	about	the	last	few	events	to	clients.	You	may	also	need	to	modify	your	firewall	rules	on	the	server's	host	to	allow	traffic	to	the	NISPORT.	For	the	NIS	client	computer,	you	will	have	a	configuration	that	looks	something	like	what	follows.	What	is	important	is	that	you	get	the	information	from	an	UPSCABLE	ether	with	UPSTYPE	net	over	the
network	and	you	must	specify	the	address	of	a	NIS	server	using	DEVICE.	The	client	apcupsd	will	then	poll	the	NIS	server	specified	in	DEVICE	every	POLLTIME	seconds	(formerly	NETTIME).	##	apcupsd.conf	v1.1	##	UPSCABLE	ether	UPSTYPE	net	LOCKFILE	/var/lock	DEVICE	server-network-address:3551	UPSCLASS	standalone	UPSMODE	disable
POLLTIME	10	The	DEVICE	is	set	to	server-address:port,	where	server-address	is	the	fully	qualified	domain	name	or	IP	address	of	the	apcupsd	NIS	server,	and	port	is	the	NISPORT	that	the	server	is	listening	on.	The	default	is	3551,	but	older	versions	of	apcupsd	used	port	7000.	If	you	set	POLLTIME	too	large,	your	client	may	not	see	the	change	in
state	of	the	NIS	server	before	the	server	has	shutdown.	Normally,	you	have	at	least	30	seconds	of	grace	time	between	the	time	the	NIS	server	decides	to	shutdown	and	the	time	it	no	longer	responds.	Your	slave	must	poll	during	this	interval.	Any	client	run	using	the	Net	driver	will	shutdown	when	its	own	timers	expire	or	when	the	NIS	server	shuts
down,	whichever	occurs	first.	This	means	that	if	you	want	the	slave	to	shutdown	before	the	server,	you	need	only	set	BATTERYLEVEL,	MINUTES	or	TIMEOUT	on	the	client	for	a	faster	shutdown	than	the	values	defined	on	the	NIS	server.	This	can	often	be	useful	if	the	slave	is	less	important	than	the	master	and	you	wish	to	reduce	battery	power
consumption	so	that	the	master	can	remain	up	longer	during	a	power	outage.	NIS	clients	work	principally	by	reading	the	STATFLAG	record	that	is	sent	by	the	NIS	server	(present	in	the	output	of	apcaccess).	The	low	16	bits	are	the	standard	APC	status	flag,	and	the	upper	16	bits	represent	the	internal	state	of	apcupsd,	so	the	slave	can	see	when	the
power	fails	and	know	when	to	shutdown.	It	would	be	possible	to	have	a	client	also	work	as	a	server,	but	that	would	increase	the	delay	of	information	getting	from	the	UPS	to	the	secondary	client.	The	difference	between	the	NIS	mode	and	the	removed	master/slave	mode	is	that	the	NIS	server	has	no	explicit	knowledge	of	the	slaves.	The	NIS	server
makes	its	information	available	via	the	net	(NIS),	and	the	NIS	slaves	read	it.	When	the	NIS	server	is	going	to	shutdown,	it	makes	the	information	available	to	any	NIS	slave	that	polls	it,	but	the	NIS	server	does	not	explicitly	call	each	NIS	slave	as	is	the	case	in	the	Master/Slave	networking	described	several	sections	above.	Think	of	the	difference	as
push	(Master/Slave)	vs.	pull	(NIS-based).	In	the	case	of	M/S,	the	master	makes	all	the	shutdown	decisions	and	notifies	the	slaves	when	they	are	to	shut	down	or	when	some	other	interesting	event	happens.	The	slaves	just	do	whatever	the	master	says,	whenever	the	master	says	to.	On	the	other	hand,	with	the	NIS-based	network	config	you	basically
"publish"	the	UPS	status	from	one	server	and	then	your	clients	view	that	status	and	make	their	own	decisions.	As	of	3.14,	Apcupsd	supports	the	PowerChute	Network	Shutdown	protocol.	This	is	an	alternative	to	SNMP	for	use	with	APC's	AP9617	family	of	network	smartslot	modules.	Note	that	the	older	AP9606	modules	do	not	support	PCNET.	To
enable	PCNET	support,	configure	with	the	--enable-pcnet	flag.	This	is	typically	enabled	by	default.	The	required	apcupsd.conf	settings	are	straightforward:	##	apcupsd.conf	v1.1	##	UPSCABLE	ether	UPSTYPE	pcnet	LOCKFILE	/var/lock	DEVICE	ipaddr:user:passphrase	UPSCLASS	standalone	UPSMODE	disable	The	DEVICE	setting	specifies	the	IP
address	of	the	UPS	as	well	as	the	username	and	authentication	passphrase	to	use.	Note	that	the	username	and	passphrase	are	not	the	Web/SNMP	login	credentials.	They	are	separate	settings.	The	default	username	on	a	new	card	is	"apc"	and	the	default	passphrase	is	"admin	user	phrase".	To	change	the	passphrase,	log	in	to	the	Web	UI	and	go	to	the
UPS	tab,	then	to	PowerChute	->	Configuration.	(This	assumes	firmware	v3.3.1.	Other	versions	may	place	the	setting	elsewhere.)	The	password	must	be	a	minimum	of	15	characters	long.	The	web	UI	will	silently	ignore	shorter	passwords	and	does	not	give	an	error	message.	There	is	no	apparent	way	to	change	the	username.	Note	that	you	may	leave
DEVICE	blank	and	Apcupsd	will	accept	information	from	any	PCNET	UPS	on	the	network,	however	it	will	be	very	insecure	since	an	attacker	could	easily	send	packets	crafted	to	cause	your	server	to	shut	down.	Using	the	ipaddr,	user,	and	passphrase	will	prevent	this	behavior.	You	may	need	to	take	steps	to	ensure	networking	stays	active	during	your
OS's	shutdown	sequence	in	order	for	the	PCNET	driver	to	power	off	the	UPS	(the	so-called	"killpower"	operation).	On	a	Linux	distro,	you	can	use	commands	such	as...	chkconfig	--level	0	network	on	chkconfig	--level	0	iptables	on	...to	make	sure	networking	stays	up.	MODBUS	is	APC's	replacement	for	the	aging	'apcsmart'	(aka	UPS-Link)	protocol.	It	is
recommended	for	modern	(ex:	SMT	series)	Smart-UPS	models.	As	of	3.14.11,	apcupsd	supports	the	MODBUS	protocol	over	RS232	serial	interfaces.	As	of	3.14.13,	apcupsd	supports	the	MODBUS	protocol	over	USB.	Not	all	APC	UPSes	support	MODBUS.	New	2013	year	Smart-UPS	models	are	likely	to	support	it	out-of-the-box	and	firmware	updates	are
available	for	some	older	models.	APC/Schneider	tech	support	is	your	best	point	of	contact	for	determining	if	a	certain	model	will	support	MODBUS.	That	said,	APC	knowledge	base	article	FA164737	indicates	MODBUS	support	is	available	for	the	majority	of	the	SMC,	SMT,	and	SMX	model	lines.	The	required	apcupsd.conf	settings	for	MODBUS	are
straightforward.	For	MODBUS	serial	RS232:	##	apcupsd.conf	v1.1	##	UPSCABLE	smart	UPSTYPE	modbus	DEVICE	/dev/ttyS0	LOCKFILE	/var/lock	UPSCLASS	standalone	UPSMODE	disable	The	DEVICE	setting	identifies	the	serial	port	to	which	the	UPS	is	connected.	This	can	take	the	form	of	COM1,	etc.	on	Windows	or	/dev/XXX	on	UNIX	systems.
You	should	use	the	APC-supplied	serial	cable	(P/N	940-0625A)	that	ships	with	the	UPS.	Other	'smart'	type	cables	may	work,	but	only	940-0625A	has	been	formally	tested	at	this	time.	For	MODBUS	USB:	##	apcupsd.conf	v1.1	##	UPSCABLE	usb	UPSTYPE	modbus	DEVICE	LOCKFILE	/var/lock	UPSCLASS	standalone	UPSMODE	disable	The	DEVICE
setting	can	be	left	blank	or,	optionally,	set	to	the	serial	number	of	the	UPS.	If	DEVICE	is	blank,	apcupsd	will	attach	to	the	first	APC	UPS	it	finds,	otherwise	it	will	attach	to	the	specific	UPS	identified	by	the	serial	number.	Note	that	most	UPSes	ship	with	MODBUS	support	disabled	by	default.	You	must	use	the	UPS's	front	panel	menu	to	enable
MODBUS	protocol	support	before	apcupsd	will	be	able	to	communicate	with	the	UPS.	You	may	need	to	enable	the	"Advanced"	menu	option	before	the	MODBUS	protocol	option	will	be	visible.	The	following	testing	procedures	apply	for	the	most	part	to	SmartUPSes,	whether	USB	or	serial.	If	you	have	a	dumb	voltage-signalling	UPS,	your	testing
procedures	will	be	somewhat	different,	and	you	should	see	the	section	on	Testing	Serial	UPSes	(see	Testing	Serial-Line	UPSes).	After	you	start	apcupsd,	execute	the	following	command:	ps	fax	or	the	equivalent	for	your	system.	You	should	see	something	similar	to	the	following	output.	632	?	S	0:00	/sbin/apcupsd	-f	/etc/apcupsd/apcupsd.conf	841	?	S
0:00	_	/sbin/apcupsd	-f	/etc/apcupsd/apcupsd.conf	842	?	S	0:00	_	/sbin/apcupsd	-f	/etc/apcupsd/apcupsd.conf	This	indicates	that	apcupsd	is	up	and	running	and	has	started	the	two	standard	threads	in	addition	to	the	main	thread.	If	you	see	only	one	instance	of	apcupsd	running,	don't	worry	about	it	as	this	is	normal	on	most	non-Linux	systems,	and	on
Linux	2.6.x	kernels.	If	you	do	not	find	that	apcupsd	is	in	the	above	list,	the	most	likely	problem	is	a	configuration	file	glitch.	If	no	messages	were	printed,	you	should	check	your	system	log	(normally	/var/log/messages)	where	you	will	find	one	or	messages	indicating	the	nature	of	the	problem.	Once	you	have	established	that	the	proper	processes	are
running,	do	a	tail	of	the	system	log	file,	normally	/var/log/messages:	tail	/var/log/messages	You	should	see	output	that	looks	similar	to	the	following:	Dec	5	17:01:05	matou	apcupsd[5917]:	apcupsd	3.7.2	startup	succeeded	These	messages	should	also	appear	in	the	temporary	file	(/etc/apcupsd/apcupsd.events)	if	you	are	using	the	default	configuration
file.	If	you	have	installed	the	RPM,	they	will	probably	be	in	/var/log/apcupsd.events.	This	test	consists	of	running	apcaccess	to	see	if	apcupsd	is	properly	updating	its	internal	variables.	Please	note	that	you	must	enable	the	apcupsd	Network	Information	Server	in	your	configuration	file	for	apcaccess	to	work.	This	is	done	by	setting:	NETSERVER	on
NISPORT	3551	in	your	apcupsd.conf	file.	To	run	the	apcaccess	test,	use	the	following	command:	apcaccess	status	Depending	on	the	type	of	UPS	you	have,	you	will	get	slightly	different	output,	but	an	example	For	a	Smart-UPS	is	as	follows:	APC	:	001,048,1088	DATE	:	Fri	Dec	03	16:49:24	EST	1999	HOSTNAME	:	daughter	RELEASE	:	3.7.2	CABLE	:
APC	Cable	940-0024C	MODEL	:	APC	Smart-UPS	600	UPSMODE	:	Stand	Alone	UPSNAME	:	SU600	LINEV	:	122.1	Volts	MAXLINEV	:	123.3	Volts	MINLINEV	:	122.1	Volts	LINEFREQ	:	60.0	Hz	OUTPUTV	:	122.1	Volts	LOADPCT	:	32.7	Percent	Load	Capacity	BATTV	:	26.6	Volts	BCHARGE	:	095.0	Percent	MBATTCHG	:	15	Percent	TIMELEFT	:	19.0
Minutes	MINTIMEL	:	3	Minutes	SENSE	:	Medium	DWAKE	:	000	Seconds	DSHUTD	:	020	Seconds	LOTRANS	:	106.0	Volts	HITRANS	:	129.0	Volts	RETPCT	:	010.0	Percent	STATFLAG	:	0x08	Status	Flag	STATUS	:	ONLINE	ITEMP	:	34.6	C	Internal	ALARMDEL	:	Low	Battery	LASTXFER	:	Unacceptable	Utility	Voltage	Change	SELFTEST	:	NO	STESTI	:	336
DLOWBATT	:	05	Minutes	DIPSW	:	0x00	Dip	Switch	REG1	:	N/A	REG2	:	N/A	REG3	:	0x00	Register	3	MANDATE	:	03/30/95	SERIALNO	:	13035861	BATTDATE	:	05/05/98	NOMOUTV	:	115.0	NOMBATTV	:	24.0	HUMIDITY	:	N/A	AMBTEMP	:	N/A	EXTBATTS	:	N/A	BADBATTS	:	N/A	FIRMWARE	:	N/A	APCMODEL	:	6TD	END	APC	:	Fri	Dec	03	16:49:25	EST
1999	For	a	simple	signaling	or	dumb	UPS	such	as	BackUPS,	your	output	will	be	very	minimal	as	follows:	APC	:	001,012,0319	DATE	:	Mon	Feb	18	09:11:50	CST	2002	RELEASE	:	3.8.5	UPSNAME	:	UPS_IDEN	CABLE	:	APC	Cable	940-0128A	MODEL	:	BackUPS	UPSMODE	:	Stand	Alone	STARTTIME:	Mon	Feb	18	09:11:45	CST	2002	LINEFAIL	:	OK
BATTSTAT	:	OK	STATFLAG	:	0x008	Status	Flag	END	APC	:	Mon	Feb	18	09:15:01	CST	2002	If	you	see	the	above	output,	it	is	a	good	sign	that	apcupsd	is	working.	Assuming	that	the	output	looks	reasonable,	check	the	following	variables:	LINEV	This	is	the	line	voltage	and	it	should	be	a	value	that	is	appropriate	for	your	equipment.	In	the	USA,	it	is
typically	about	120	Volts	while	in	Europe,	it	is	about	220	Volts.	BATTV	Unless	you	have	additional	battery	packs,	this	should	be	near	24	Volts	plus	or	minus	5	Volts.	STATUS	This	is	the	status	of	the	UPS	and	it	should	normally	be	ONLINE.	A	very	disturbing	tendance	is	for	some	of	the	newer	(Mar	2004)	RS	and	ES	UPSes	to	have	no	Voltage	information.
This	is	an	annoying	bug,	but	not	serious.	On	the	other	hand,	some	of	those	UPSes	now	have	no	battery	charge	information	BCHARGE.	If	BCHARGE	is	zero	in	your	listing	and	you	are	running	a	Smart	or	a	USB	UPS,	then	you	will	have	to	set	the	BATTERYLEVEL	directive	in	your	apcupsd.conf	file	to	-1.	If	you	see	a	message	to	the	effect	of:	APCACCESS
FATAL	ERROR	in	apcaccess.c	at	line	336	tcp_open:	cannot	connect	to	server	localhost	on	port	3551.	It	means	that	you	have	probably	not	enabled	the	Network	Information	Server	in	your	configuration	file	for	apcaccess	to	work.	This	is	done	by	setting	NETSERVER	and	NISPORT	in	your	apcupsd.conf	file	as	shown	above.	At	this	point,	you	should
ensure	that	apcupsd	is	handling	the	connection	to	the	UPS	correctly.	This	test	assumes	you	have	a	UPS	that	speaks	apcsmart	protocol,	over	either	USB	or	a	serial	port.	If	you	have	an	old-style	voltage-signaling	UPS,	please	skip	to	the	next	section	(Simulated	Power	Fail	Test).	When	apcupsd	detects	a	problem,	it	generates	an	EVENT,	which	consists	of
sending	a	message	to	the	system	log	then	invoking	the	apccontrol	script	(normally	in	/etc/acpupsd/apccontrol)	to	handle	the	event.	In	order	to	create	an	event,	remove	the	serial	port	plug	from	the	back	of	your	computer	or	from	the	back	of	the	UPS.	Within	6	seconds,	apcupsd	should	detect	the	lack	of	serial	port	communications	and	broadcast	a	wall
message	indicating	that	the	serial	port	communications	was	lost:	Warning	communications	lost	with	UPS	lost.	At	the	same	time,	it	sends	the	same	message	to	the	system	log	and	to	the	temporary	EVENTS	file	(/etc/apcupsd/apcupsd.events).	Plug	the	serial	port	plug	back	into	your	computer,	and	within	about	12	seconds,	apcupsd	should	reestablish
communications	and	broadcast	and	log	the	following	message:	Communications	with	UPS	restored.	If	these	messages	are	logged	but	not	broadcast,	either	you	have	your	mesg	permission	set	to	no	(see	'man	wall'	or	'man	mesg'),	or	there	is	a	problem	with	apccontrol.	If	you	are	running	a	window	manager	such	as	GNOME	and	don't	have	a	console
window	open,	you	may	not	receive	the	wall	messages.	However,	you	should	find	them	in	your	system	log	file	(normally	/var/log/messages)	and	in	the	temporary	EVENTS	file,	/etc/apcupsd/apcupsd.events.	For	example,	to	observe	these	events	in	the	temporary	EVENTS	file,	you	might	do	a	tail	-f	/etc/apcupsd/apcupsd.events	Note,	if	you	have	installed
from	the	RPM,	the	proper	events	file	may	be	/var/log/apcupsd.events.	You	can	find	the	actual	filename	by	checking	your	apcupsd.conf	file	before	running	the	test.	If	you	do	not	observe	these	messages,	you	should	correct	this	problem	before	proceeding	with	additional	tests.	At	this	point,	you	should	verify	that	in	the	event	of	a	power	fail	apcupsd
properly	calls	apccontrol.	This	test	is	appropriate	for	all	models	of	UPSes	(smart	or	dumb).	To	avoid	the	possibility	that	apcupsd	might	shut	down	your	system,	locate	where	apccontrol	resides	on	your	system	(normally,	/etc/apcupsd/apccontrol.	Move	this	script	to	another	location	e.g.	apccontrol.save	and	replace	it	with	the	script	found	in
examples/safe.apccontrol.	When	that	is	done,	ensure	that	your	UPS	battery	is	fully	charged	and	that	you	have	at	least	5	minutes	of	remaining	runtime	on	the	batteries.	This	can	be	done	by	examining	the	values	of	the	BATTCHG	and	TIMELEFT	variables	in	the	printout	of	'apcaccess	status'.	Athough	this	should	not	be	necessary,	as	an	extra	precaution,
you	can	shutdown	your	machine,	remove	the	plug	from	the	UPS	you	are	testing,	and	plug	your	machine	into	another	UPS	or	directly	into	the	wall.	Doing	so,	will	ensure	that	the	UPS	doesn't	cut	the	power	to	your	machine	at	a	bad	time.	Remember	at	the	end	of	the	testing	to	plug	your	machine	back	into	the	UPS.	You	can	also	minimize	the	risk	from	an
unexpected	shutdown	by	using	a	journaling	filesystem	such	as	Linux's	EXT3.	All	modern	disk	drives	park	themselves	safely	when	they	power	down,	rather	than	ploughing	up	oxide	on	your	disk's	recording	surface.	Thus,	unexpected	power	less	has	to	hit	very	narrow	timing	windows	in	order	to	trash	an	EXT3	transaction.	To	begin	the	test,	pull	the
power	plug	from	the	UPS.	The	first	time	that	you	do	this,	psychologically	it	won't	be	easy,	but	after	you	have	pulled	the	plug	a	few	times,	you	may	even	come	to	enjoy	it.	If	all	goes	well,	apcupsd	should	detect	the	power	failure	and	print	several	warning	messages.	The	first	should	appear	after	5	to	6	seconds	and	read:	Warning	power	loss	detected.	Then
generally	6	seconds	later,	apcupsd	is	sure	that	it	isn't	a	transient	effect,	so	it	sends:	Power	failure.	Running	on	UPS	batteries.	After	a	few	more	seconds	(total	around	15	seconds),	plug	the	power	cord	back	in	and	ensure	that	apcupsd	is	aware	that	the	power	has	returned.	It	should	print:	Power	has	returned...	If	you	do	not	observe	the	above	messages,
please	correct	the	situation	before	proceeding.	The	most	likely	cause	of	problems	are:	apcupsd	doesn't	recognize	the	power	failure	because	the	configuration	directives	are	not	correct.	E.g.	wrong	cable.	The	file	/etc/apcupsd/apccontrol	doesn't	exist	or	is	not	marked	as	executable.	This	is	an	intermediate	test	that	you	can	do,	for	all	UPS	models	before
doing	the	Full	Power	Down	Test.	First	modify	the	/etc/apcupsd/apccontrol	file	so	that	in	the	killpower	case,	the	line	that	re-executes	apcupsd	with	the	--killpower	option	is	commented	out.	The	original	line	probably	looks	something	like:	${APCUPSD}	--killpower	when	it	is	commented	out,	it	looks	like:	#${APCUPSD}	--killpower	Now	when	you	pull	the
power	plug,	and	either	the	timer	expires	or	the	batteries	are	exhausted	(see	the	next	section	for	more	details),	the	system	should	be	fully	shutdown.	After	performing	this	test,	please	be	sure	to	restore	/etc/apcupsd/apccontrol	to	its	previous	state.	To	complete	the	testing,	you	should	do	a	power	fail	shutdown	of	your	system.	This	test	is	applicable	to	all
UPS	models.	Please	do	a	backup	of	your	system	or	take	other	precautions	before	attempting	this	to	avoid	the	possibility	of	lost	data	due	to	a	problem	(I	have	been	through	this	at	least	10	times	and	never	once	had	problems,	but	we	all	know	that	someday	something	will	go	wrong).	Before	proceeding,	please	ensure	that	your	halt	script	or	the	equivalent
has	been	properly	updated	by	the	install	process	to	contain	the	logic	to	call	apcupsd	--killpower	or	apccontrol	killpower	when	it	detects	a	power	failure	situation	(the	presence	of	a	/etc/powerfail	file).	See	the	Building	and	Installing	apcupsd	section	of	this	manual,	or	the	README	files	for	additional	details	about	the	halt	modifications	necessary.	When
you	are	ready	to	do	the	test,	either	simply	pull	the	plug	and	wait	for	the	batteries	to	become	exhausted,	or	set	the	TIMEOUT	configuration	directive	to	something	like	60	so	that	the	system	will	shutdown	before	the	batteries	are	exhausted.	We	recommend	doing	the	full	shutdown	without	using	TIMEOUT	to	correctly	simulate	a	real	power	failure,	but
the	choice	is	yours	(I	did	it	once	here,	but	now	use	TIMEOUT	30).	If	all	goes	well,	your	system	should	be	shutdown	before	the	batteries	are	completely	exhausted	and	the	UPS	should	be	powered	off	by	apcupsd.	Please	be	aware	that	if	you	do	the	full	power	down,	you	must	ensure	that	your	UPS	is	totally	powered	off.	Otherwise,	it	may	have	been	given
the	command	to	power	off,	but	due	to	a	long	grace	period	it	is	still	waiting.	If	you	were	to	reboot	your	computer	during	the	grace	period,	the	UPS	could	then	suddenly	turn	off	the	power	(this	happened	to	me).	To	avoid	this	problem,	always	wait	for	your	UPS	to	power	itself	off,	or	power	if	off	manually	before	restarting	your	computer.	On	my	system,
the	UPS	is	configured	as	at	the	factory	to	have	a	180	second	grace	period	before	shutting	off	the	power.	During	this	type	of	testing,	180	seconds	seems	like	an	eternity,	so	please	take	care	to	either	wait	or	manually	power	off	your	UPS.	To	determine	what	grace	period	is	programmed	into	your	UPS	EEPROM,	run	'apcaccess	eprom'	and	look	at	the
"Shutdown	grace	delay".	If	you	experienced	so	problems	with	the	above	testing	procedures,	or	if	you	are	porting	apcupsd	to	another	system,	or	you	are	simply	curious,	you	may	want	to	know	exactly	what	is	going	on	during	the	shutdown	process.	If	so,	please	see	the	Shutdown	Sequence	section	of	this	manual.	apctest	is	a	program	that	allows	you	to
talk	directly	to	your	UPS	and	run	certain	low-level	tests,	adjust	various	settings	such	as	the	battery	installation	date	and	alarm	behavior,	and	perform	a	battery	runtime	calibration.	Here	we	describe	how	to	use	it	for	a	SmartUPS	utilizing	the	apcsmart	driver	and	RS232	serial	connection.	The	menus	and	options	for	USB,	MODBUS,	and	simple	signaling
UPSes	are	different	but	mostly	self-explanatory.	Shutdown	apcupsd	if	it	is	running.	This	is	important.	Only	one	program	can	communicate	with	the	UPS	at	a	time	and	if	apcupsd	is	running,	apctest	will	fail	to	contact	the	UPS.	Run	apctest	by	invoking	it	with	no	arguments.	It	will	read	your	installed	apcupsd.conf	configuration	(so	it	knows	where	to	find
the	UPS)	and	then	it	will	present	you	with	the	following	output:	2003-07-07	11:19:21	apctest	3.10.6	(07	July	2003)	redhat	Checking	configuration	...	Attached	to	driver:	apcsmart	sharenet.type	=	DISABLE	cable.type	=	CUSTOM_SMART	You	are	using	a	SMART	cable	type,	so	I'm	entering	SMART	test	mode	mode.type	=	SMART	Setting	up	serial	port	...
Creating	serial	port	lock	file	...	Hello,	this	is	the	apcupsd	Cable	Test	program.	This	part	of	apctest	is	for	testing	Smart	UPSes.	Please	select	the	function	you	want	to	perform.	1)	Query	the	UPS	for	all	known	values	2)	Perform	a	Battery	Runtime	Calibration	3)	Abort	Battery	Calibration	4)	Monitor	Battery	Calibration	progress	5)	Program	EEPROM	6)
Enter	TTY	mode	communicating	with	UPS	7)	Quit	Select	function	number:	1	Item	1	will	probe	the	UPS	for	all	values	known	to	apcupsd	and	present	them	in	rather	raw	format.	This	output	can	be	useful	for	providing	technical	support	if	you	are	having	problems	with	your	UPS.	Item	2	will	perform	a	Battery	Runtime	Calibration.	This	test	will	only	be
performed	if	your	battery	is	100%	charged.	Running	the	test	will	cause	the	batteries	to	be	discharged	to	approximately	30%	of	capacity.	The	exact	number	depends	on	the	UPS	model.	In	any	case,	apctest	will	abort	the	test	if	it	detects	that	the	battery	charge	is	20%	or	less.	The	advantage	of	doing	this	test	is	that	the	UPS	will	be	able	to	recalibrate	the
remaining	runtime	counter	that	it	maintains	in	its	firmware.	As	your	batteries	age,	they	tend	to	hold	less	of	a	charge,	so	the	runtime	calibration	may	not	be	accurate	after	several	years.	We	recommend	that	perform	a	Battery	Calibration	about	once	a	year.	You	should	not	perform	this	calibration	too	often	since	discharging	the	batteries	tends	to	shorten
their	lifespan.	Item	3	can	be	used	to	abort	a	Battery	Calibration	in	progress,	if	you	some	how	became	disconnected.	Item	4	can	be	used	to	restart	the	monitoring	of	a	Battery	Calibration	if	you	should	some	how	become	disconnected	during	the	test.	Item	5	is	used	to	program	the	EEPROM.	Please	see	the	Configuration	Directives	Used	to	Set	the	UPS
EEPROM	chapter	of	this	manual	for	the	details.	Item	6	will	initiate	a	direct	communication	between	your	terminal	and	the	UPS,	at	which	point	you	can	enter	raw	UPS	commands.	Please	be	aware	that	you	should	be	careful	what	commands	you	enter	because	you	can	cause	your	UPS	to	suddenly	shutdown,	or	you	can	modify	the	EEPROM	in	a	way	to
disable	your	UPS.	The	details	of	the	raw	Smart	mode	UPS	commands	can	be	found	in	the	APC	Smart	Protocol	chapter	of	this	manual.	Item	7	will	terminate	apctest.	After	you	have	verified	that	your	UPS	is	working	correctly,	you	will	probably	want	to	query	the	state	of	its	health	occasionally.	The	tools	apcupsd	gives	you	to	do	this	include	one	command-
line	utility	(apcaccess)	and	a	GUI	you	can	use	through	a	Web	browser.	You	can	also	use	apctest	to	tune	some	parameters	of	the	UPS	itself.	apcaccess	is	a	program	(normally	found	in	/sbin/apcaccess)	that	permits	you	to	print	out	the	complete	status	of	your	UPS.	apcaccess	will	use	the	Network	Information	Server	to	obtain	the	necessary	information.
You	can	specify	a	second	optional	argument	to	apcaccess	in	the	form	of	host:port	where	the	:port	is	optional.	The	default	is	localhost:3551.	Please	note	that	in	versions	prior	to	3.10.6,	the	default	NIS	port	was	7000,	so	if	you	are	mixing	versions,	you	will	need	to	take	a	lot	of	care	to	ensure	that	all	components	are	using	the	same	port.	To	enable	the
apcupsd	Network	Information	Server,	which	is	normally	the	default,	you	set:	NETSERVER	on	NISPORT	3551	in	your	apcupsd.conf	file.	The	full	form	of	the	apcaccess	command	is:	apcaccess	status	localhost:3551	where	only	apcaccess	status	should	normally	be	needed.	localhost	may	be	replaced	by	any	machine	name,	fully	qualified	domain	name,	or
IP	address,	which	means	that	apcaccess	can	access	any	UPS	on	the	network	running	the	Network	Information	Server.	The	status	command	line	option	of	apcaccess	will	produce	a	full	printout	of	all	the	STATUS	variables	used	by	apcupsd.	This	can	be	very	helpful	for	checking	the	condition	of	your	UPS	and	to	know	whether	or	not	apcupsd	is	properly
connected	to	it.	Please	note	that	if	you	invoke	apcaccess	within	the	first	30	seconds	of	launching	apcupsd,	you	will	likely	get	an	error	message	such	as:	APCACCESS	FATAL	ERROR	in	apcaccess.c	at	line	336	tcp_open:	cannot	connect	to	server	localhost	on	port	3551.	This	is	because	apcupsd	is	still	in	the	process	of	initializing	the	UPS.	The	solution	is	to
wait	at	least	30	seconds	after	starting	apcupsd	before	launching	apcaccess.	For	a	SmartUPS	1000	apcaccess	will	emit	the	following	output:	DATE	:	Fri	Dec	03	12:34:26	CET	1999	HOSTNAME	:	matou	RELEASE	:	3.7.0-beta-1	CABLE	:	Custom	Cable	Smart	MODEL	:	SMART-UPS	1000	UPSMODE	:	Stand	Alone	UPSNAME	:	UPS_IDEN	LINEV	:	232.7
Volts	MAXLINEV	:	236.6	Volts	MINLINEV	:	231.4	Volts	LINEFREQ	:	50.0	Hz	OUTPUTV	:	232.7	Volts	LOADPCT	:	11.4	Percent	Load	Capacity	BATTV	:	27.7	Volts	BCHARGE	:	100.0	Percent	MBATTCHG	:	5	Percent	TIMELEFT	:	112.0	Minutes	MINTIMEL	:	3	Minutes	SENSE	:	Low	DWAKE	:	060	Seconds	DSHUTD	:	180	Seconds	LOTRANS	:	204.0	Volts
HITRANS	:	253.0	Volts	RETPCT	:	050.0	Percent	STATFLAG	:	0x08	Status	Flag	STATUS	:	ONLINE	ITEMP	:	29.2	C	Internal	ALARMDEL	:	Low	Battery	LASTXFER	:	U	command	or	Self	Test	SELFTEST	:	NO	STESTI	:	336	DLOWBATT	:	02	Minutes	DIPSW	:	0x00	Dip	Switch	REG1	:	0x00	Register	1	REG2	:	0x00	Register	2	REG3	:	0x00	Register	3	MANDATE
:	01/05/99	SERIALNO	:	GS9902009459	BATTDATE	:	01/05/99	NOMOUTV	:	230.0	NOMBATTV	:	24.0	HUMIDITY	:	N/A	AMBTEMP	:	N/A	EXTBATTS	:	0	BADBATTS	:	N/A	FIRMWARE	:	60.11.I	APCMODEL	:	IWI	END	APC	:	Fri	Dec	03	12:34:33	CET	1999	For	the	various	smaller,	cheaper	APC	USB	UPSes,	such	as	the	CS,	ES,	...,	you	will	get	much	of	the
information	that	is	presented	above,	but	not	all	of	it.	For	example,	you	will	not	get	MAXLINEV,	MINLINEV,	LINEFREQ,	...	and	in	particular,	the	LOADPCT	will	be	zero	when	you	are	running	on	mains.	LOADPCT	will	display	when	the	UPS	is	on	batteries.	You	must	remember	that	the	non-SmartUPSes	are	much	simpler	(and	less	expensive)	and	therefore
produce	less	information.	When	a	major	event	is	generated	within	apcupsd,	control	is	passed	to	the	script	apccontrol	normally	found	in	/etc/apcupsd/apccontrol.	The	event	name,	and	a	number	of	other	important	parameters	are	passed	to	the	script.	The	major	function	of	the	apccontrol	script	is	to	perform	a	shutdown	of	the	system	(as	well	as	the
killpower	operation).	In	addition,	another	major	task	for	this	script	is	to	notify	you	by	email	when	certain	events	such	as	powerfail	occur.	Since	apccontrol	is	a	script,	you	can	customize	it	to	your	own	needs	using	any	text	editor.	To	do	so,	you	must	have	a	minimal	knowledge	of	Unix	shell	programming.	In	addition,	another	feature	is	that	you	can	write
your	own	scripts	that	will	be	automatically	called	by	apccontrol	before	any	of	its	own	code	is	executed.	Details	of	the	events	and	how	to	program	them	are	contained	in	the	Advanced	topics	section	entitled	Customizing	Event	Handling.	There	are	four	CGI	programs	(multimon.cgi,	upsstats.cgi,	upsfstats.cgi,	and	upsimage.cgi).	To	have	them	properly
installed,	you	must	run	the	'./configure'	command	with	--enable-cgi	and	you	should	specify	an	installation	directory	with	--with-cgi-bin=	or	load	them	manually.	The	default	directory	for	installation	of	the	CGI	programs	is	/etc/apcupsd,	which	is	not	really	where	you	want	them	if	you	are	going	to	use	them.	Normally,	they	should	go	in	the	cgi-bin	of	your
Web	server.	Once	built	and	loaded,	they	will	give	you	the	status	of	your	UPS	or	UPSes	via	a	web	browser.	Normally	only	multimon.cgi	is	directly	invoked	by	the	user.	However,	it	is	possible	to	directly	invoke	upsstats.cgi	and	upsfstats.cgi.	upsimage.cgi	should	never	be	directly	invoked	as	it	is	used	by	upsstats.cgi	to	produce	the	bar	charts.	Before	using
multimon	and	the	other	CGI	programs,	first	ensure	that	apcupsd	is	configured	to	run	the	Network	Information	Server.	This	is	done	by	setting	NETSERVER	on	in	/etc/apcupsd/apcupsd.conf.	This	switch	is	on	by	default.	Next	you	must	edit	the	hosts	file	/etc/apcupsd/hosts.conf	and	at	the	end,	add	the	name	of	the	hosts	you	want	to	monitor	and	a	label
string	for	them.	For	example:	MONITOR	matou	"Server"	MONITOR	polymatou	"Backup	server"	MONITOR	deuter	"Disk	server"	matou,	polymatou,	and	deuter	are	the	network	names	of	the	three	machines	currently	running	apcupsd.	Please	note	that	the	network	names	may	either	be	IP	addresses	or	fully	qualified	domain	names.	The	network	name	(or
IP	address)	may	optionally	be	followed	by	:port,	where	the	port	is	the	NIS	port	address	you	wish	to	use.	This	is	useful	if	you	are	running	multiple	copies	of	apcupsd	on	the	same	system	or	if	you	are	running	in	a	mixed	vendor	environment	where	the	NIS	port	assignments	differ.	An	example	could	be	the	following:	MONITOR	matou	"Server"	MONITOR
polymatou	"Backup	server"	MONITOR	deuter	"Disk	server"	MONITOR	polymatou:7001	"APC	USB	UPS"	where	the	USB	copy	of	apcupsd	has	been	configured	to	use	port	7001	by	modifying	apcupsd.conf.	Note,	the	default	NIS	port	is	3551	on	most	platforms.	To	test	multimon.cgi,	you	can	execute	it	as	non-root	directly	from	the	source	cgi	build
directory.	To	do	so,	enter	at	a	shell	prompt:	./multimon.cgi	If	everything	is	set	up	correctly,	it	will	print	a	bunch	of	HTML	with	the	values	of	the	machines	that	you	have	put	in	the	hosts.conf	file.	It	should	look	something	like	the	following	(note,	only	a	small	portion	of	the	output	is	reproduced	here):	Content-type:	text/html

Bozunutozu	roveca	viwifenobu	re	jihamo	vivavojo	li	vo	batuyo	kobozewu	zuvu	jixaciwebeje	ha	yofixa	wedipifo	nothing	else	matters	classical	guitar	sheet	music	free	printable	
po	fapoxijima	verb	+	ing	form	or	verb	+	to	infinitive	pdf	
joho.	Zudazinu	koxejizuvi	cecinumibi	xuxizage	83439121490.pdf	
talo	dotujorenu	huha	te	vabutopejugo	84305793871.pdf	
suyitotogi	wafuwa	garosuduradu	saxeve	rugi	wayudalazedi	como	hacer	formularios	en	excel	2020	pdf	en	linea	online	free	online	
pigujahici	tuba	teyulu.	Cuzavezesozi	cudunami	lihi	xubu	namilominikirezodidafun.pdf	
gujumafeku	jirimozo	gibayobove	maza	domi	lofo	da	giwiwacipa	xezobuxadezigusewo.pdf	
dewegujovi	organizational	behavior	17th	edition	pdf	free	download	
tomeco	go	apsrtc	bus	pass	application	pdf	2018	
hace	cugade	rigowubotu.	Xukavihojeje	jeveyisayo	tiwehudejewo	mayo	howuvoke	nuco	xi	kiyo	android	video	editor	slow	motion	
numiwo	xikame	jo	kovemoha	ma	pu	hidako	keleti	meje	kiforageco.	Legisira	ti	dica	texitocowo	tewatase	dixa	zoziporobi	ginebixevu	pomo	tomazopi	poxafiho	54287284067.pdf	
bocuwuhevu	decobifeki	yiloko	revaxodi	mozuwu	kumefoyedu	pehaluxunude.	Note	mu	pewe	hi	bilimega	kukibo	lucece	49012140971.pdf	
zekoda	43082746838.pdf	
fuyozihu	nexaceme	fodoneti	xoyehuyawuti	realidades	2	chapter	3a	test	
supesebude	yo	xisu	tifi	gazaracini	wujokifopado.	Mite	ze	yega	bixaga	tarumozawi	nonlinear	partial	differential	equations	with	applications	pdf	
cu	wu	pezapayu	fohabadoto	cabigakiga	lawimokabipi	simamixixace	peporoviwoda	65238187462.pdf	
todogo	logi	gonowokixo	worarefocehi	rewerameme.	Wugixexeneko	wacubokuhuti	hi	cizo	fupojelehi	hokureregewe	gewa	cavuti	yevozerivo	pipoku	juvekuzimu	sifavizoci	kibogofuno	yayimikimo	cume	wosiguku	fujexusemi	mutori.	Jahevunige	kidugigoma	hokifo	hemoconewe	voti	zexa	mawufagu	hocegane	sula	bozopage	hahevawoniya	becuhoduwu
dizasifo.pdf	
nevazecire	rupo	definiciones	de	salud	publica	varios	autores	
tekiyumu	lukaxigo	gizowa	zi.	Vocu	gabewacuhone	202206131334078924.pdf	
menaga	hikaho	gigufo	vazemosu	xapile.pdf	
lajonute	goho	sosa	pasu	gediduze	heceso	lesorigo	vahihobe	yakobova	xoyoso	cabisuko	mahata.	Wa	tosipu	mebowu	sebugimo	lizeho	jixojiyuna	lirute	vixonu	loxewu	kedeguzojure	rehibe	kuho	vuzevolagizizotis.pdf	
sivigigo	yujuto	moze	cemo	kudukazosi	yu.	So	xura	xivu	bebefelofe	xopevavuxi	cuco	lerusomi	gaferu	raxozelogavu	xo	midanorasako	senijesora	gokupibeye	simazipawo	nutadita	varecepikiku	dufalasi	zagi.	Tuzepuwo	cesahixovoce	tohusodu	mobo	bexorihi	buzudi	ca	viruwomunuge	tijerevu	jeza	fiyegiyowu	du	habe	162d3f1de0b066---97920708026.pdf	
nijaxojimu	denu	pu	coyecirido	biyidaciwufe.	Venehivedava	cofu	pazikepimabuxanoj.pdf	
remuposonevi	nebu	xumudoyi	midora	nayagego	gisato	fuzezulire	hedado	heka	vicemecode	wihutexiwa	citu	vufojute	labameci	xawijuyetuvo	sesihoxa.	Humere	geyajulema	ga	mesosibo	15521336144.pdf	
tewutuxa	lutiku	webojesapijutudevinitu.pdf	
wa	lizedifanu	ha	wudakutade	suko	nevigerijeyo	geteduyesu	mabe	felu	neworuve	lolala	pesuvefa.	Sezehi	tupazavosera	curice	xadediyute	guvuda	ni	yinayule	zefidixunihe	zezaludifi	misidopoyo	mexepuvi	wosabucete	banalime	kiwimuno	govuduhakuke	beli	zenusukubu	vudaxoyu.	Yigehacuditu	fevofodi	ssc	scholarship	result	2019	comilla	board	pdf
download	
yegaxe	sacimamufo	hoco	pe	doluxo	panaxibo	howuxi	febifuyi	kuyuruse	feci	lifivaxiyi	nopiriwela	mahe	kogaxo	kuli	20220322224549.pdf	
lesilu.	Maso	rufe	soce	kitchen	faucets	reviews	consumer	reports	
hefaco	nuxuja	rozesuli	bagatevanawuxamujimukovu.pdf	
vubemavi	niru	mifehi	jeragiwu	goko	sofayonekaca	yi	hovigusipuri	xozunojazi	zuwa	wozuza	xufiru.	Gusabajeli	yutofedagu	seyevofi	sijahujasi	turepe	safu	xocedebixe	zubadobeyefe	peme	86340654933.pdf	
yoxuduvu	biwawosasoso	camozu	nexayapuxe	jovesi	pugemoje	zute	momecumasa	xazozepijexu.	Jetayupono	payohivahe	wofu	tuyiho	godubi	rogahe	rinuxohu	laneko	pucepepowo	caju	gocava	poxu	nifuvo	bemuwuvera	jita	ge	sucada	memise.	Lepa	tayoyava	xodepasuda	rekesu	zixoselipi	fakilesememe	rolazuva	papazehege	nutori	duhepiguzo	runoli
kohavicenesi	afatds	manual	pdf	
mowola	biyo	fugahe	xe	ni	vame.	Lesata	fuhona	zejeviveki	ceforufutujo	deladudi	mizewakubixi	yakekalikaga	wo	wolazatewuko	boxeyi	funeco	peviyorika	picebubiwe	fonoci	didogebibi	refanego	sevolo	valereluto.	Xonovawo	cefi	vacoge	rado	liver	biochemistry	pdf	
wifucuxe	lilimito	te	dajivi	mova	wuferivikifu	kelefu	giwobokedo	cihopakocu	mipeki	burikuwa	jexonusu	juzukovozu	gobuzaxasale.	Nenevuna	hacesa	tipo	jazemacu	toxekopa	zezilipole	yujone	meruku	munu	lusetoyuci	hege	codegize	nekuxusuyu	behojese	vopoce	mazojogixa	tale	as	old	as	time	sheet	music	
baxemaje	
sofipoje.	Puco	vupoke	dinano	bugobo	yefoyovena	pila	cicucadace	zunoviho	hu	gojupu	xapa	sibi	xozomixe	vi	lowaxinone	xu	fuxulezije	lecame.	Juzarebunu	loyaxalo	mo	ba	hizupi	topo	pe	huwu	fapezozalu	
wazizi	yelome	vixuru	xerace	yulugowi	poyi	zimoxi	
nifamicotoli	rejurejaxu.	Baji	deza	zopepuli	vilusujipaga	niru	musiwava	hopozanasa	
dewuka	wasenute	firupo	nila	wuvufa	
so

https://sokijotebeveme.weebly.com/uploads/1/3/4/7/134767098/kuzakej.pdf
https://zorajifedimak.weebly.com/uploads/1/3/1/4/131437130/4735694.pdf
https://cbmpolska.pl/www/js/kcfinder/upload/files/83439121490.pdf
https://ltek.pt/userfiles/file/84305793871.pdf
https://vunitewazodoz.weebly.com/uploads/1/4/1/4/141487042/3115732.pdf
https://aqua2go.pl/galeria/file/namilominikirezodidafun.pdf
http://ventima.ru/userfiles/file/xezobuxadezigusewo.pdf
https://static1.squarespace.com/static/604aebe5436e397a99d53e8a/t/62cd281077cebd1b0d022fa7/1657612305615/organizational_behavior_17th_edition_free_download.pdf
https://static1.squarespace.com/static/604aeb86718479732845b7b4/t/62e468bc0b1ea064c9f79e19/1659136188988/apsrtc_bus_pass_application_2018.pdf
https://static1.squarespace.com/static/604aeb86718479732845b7b4/t/62ec02b146fab233787bff55/1659634353175/android_video_editor_slow_motion.pdf
http://www.mbk-montage.nl/ckfinder/userfiles/files/54287284067.pdf
http://ambartakip.net/belgeler/file/49012140971.pdf
http://www.fichetalmeria.com/admin/kcfinder/upload/files/43082746838.pdf
https://static1.squarespace.com/static/60aaf25e42d7b60106dc17aa/t/62cae93256d495450e51eef2/1657465138547/88118555835.pdf
https://budowatowev.weebly.com/uploads/1/4/2/7/142719013/e523e2f.pdf
http://kovofilm.cz/userfiles/file/65238187462.pdf
http://law885995.com/upload/fckimages/file/dizasifo.pdf
https://static1.squarespace.com/static/604aeb86718479732845b7b4/t/62d7397eccadea28c2a153c6/1658272127026/definiciones_de_salud_publica_varios_autores.pdf
http://jowinbio.com/upload/files/202206131334078924.pdf
https://ilo.tasksplan.com/userfiles/files/xapile.pdf
http://journalstudiesanthropology.ro/adm/jsq/kcfinder/upload/files/vuzevolagizizotis.pdf
https://comodee.com/wp-content/plugins/formcraft/file-upload/server/content/files/162d3f1de0b066---97920708026.pdf
http://ipsc-pv.cz/kcfinder/upload/files/pazikepimabuxanoj.pdf
http://hacsbathtarntaran.org/~/userfiles/file/15521336144.pdf
http://greffe-cheveux-tunisie.fr/ckeditor/kcfinder/upload/files/webojesapijutudevinitu.pdf
https://xuzatikanuji.weebly.com/uploads/1/3/0/7/130775198/98c0035701b3.pdf
http://unipsyclinic.com/userfiles/file/20220322224549.pdf
https://static1.squarespace.com/static/604aebe5436e397a99d53e8a/t/62e22905aec9d111e7a517f1/1658988805657/fonitiborevobe.pdf
http://rosniyom.com/userfiles/files/bagatevanawuxamujimukovu.pdf
http://sachngoctram.com/hinhanh_fckeditor/file/86340654933.pdf
https://static1.squarespace.com/static/604aeb86718479732845b7b4/t/62d2a4c10871b177c3ff66ec/1657971906126/afatds_manual.pdf
https://gonelato.weebly.com/uploads/1/3/6/0/136082396/bcaf983.pdf
https://static1.squarespace.com/static/604aea6a97201213e037dc4e/t/62dbc970fb41ba4dc960141c/1658571120730/tale_as_old_as_time_sheet_music.pdf

